Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Mol Breed ; 44(2): 7, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38263978

ABSTRACT

Tiller number is a key component of wheat plant architecture having a direct impact on grain yield. Because of their viability, biotic resistance, and abiotic stress tolerance, wild relative species are a valuable gene source for increasing wheat genetic diversity, including yield potential. Agropyron glael, a perennial hybrid of Thinopyrum intermedium and Th. ponticum, was created in the 1930s. Recent genome analyses identified five evolutionarily distinct subgenomes (J, Jst, Jvs, Jr, and St), making A. glael an important gene source for transferring useful agronomical traits into wheat. During a bread wheat × A. glael crossing program, a genetically stable translocation line, WT153397, was developed. Sequential in situ hybridizations (McGISH) with J-, St-, and D-genomic DNA probes and pSc119.2, Afa family, pTa71, and (GAA)7 DNA repeats, as well as molecular markers specific for the wheat 6D chromosome, revealed the presence of a 6DS.6Jvs Robertsonian translocation in the genetic line. Field trials in low-input and high-input breeding nurseries over four growing seasons demonstrated the Agropyron chromosome arm's high compensating ability for the missing 6DL, as spike morphology and fertility of WT153397 did not differ significantly from those of wheat parents, Mv9kr1 and 'Mv Karizma.' Moreover, the introgressed 6Jvs chromosome arm significantly increased the number of productive tillers, resulting in a significantly higher grain yield potential compared to the parental wheat cultivars. The translocated chromosome could be highly purified by flow cytometric sorting due to the intense fluorescent labeling of (GAA)7 clusters on the Thinopyrum chromosome arm, providing an opportunity to use chromosome genomics to identify Agropyron gene variant(s) responsible for the tillering capacity. The translocation line WT153397 is an important genetic stock for functional genetic studies of tiller formation and useful breeding material for increasing wheat yield potential. The study also discusses the use of the translocation line in wheat breeding. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01439-y.

2.
Sci Rep ; 13(1): 20499, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37993509

ABSTRACT

The annual goatgrass, Aegilops biuncialis is a rich source of genes with considerable agronomic value. This genetic potential can be exploited for wheat improvement through interspecific hybridization to increase stress resistance, grain quality and adaptability. However, the low throughput of cytogenetic selection hampers the development of alien introgressions. Using the sequence of flow-sorted chromosomes of diploid progenitors, the present study enabled the development of chromosome-specific markers. In total, 482 PCR markers were validated on wheat (Mv9kr1) and Ae. biuncialis (MvGB642) crossing partners, and 126 on wheat-Aegilops additions. Thirty-two markers specific for U- or M-chromosomes were used in combination with GISH and FISH for the screening of 44 Mv9kr1 × Ae. biuncialis BC3F3 genotypes. The predominance of chromosomes 4M and 5M, as well as the presence of chromosomal aberrations, may indicate that these chromosomes have a gametocidal effect. A new wheat-Ae. biuncialis disomic 4U addition, 4M(4D) and 5M(5D) substitutions, as well as several introgression lines were selected. Spike morphology and fertility indicated that the Aegilops 4M or 5M compensated well for the loss of 4D and 5D, respectively. The new cytogenetic stocks represent valuable genetic resources for the introgression of key genes alleles into wheat.


Subject(s)
Aegilops , Triticum , Triticum/genetics , Aegilops/genetics , In Situ Hybridization, Fluorescence , Chromosomes, Plant/genetics , Translocation, Genetic , Genetic Markers , Genomics
3.
Physiol Plant ; 175(5): e13996, 2023.
Article in English | MEDLINE | ID: mdl-37882272

ABSTRACT

Modification in the light environment can induce several changes even within a short time. In this article, light intensity and spectrum-dependent changes in photosynthetic and metabolic processes were investigated in spinach leaves. Short-term exposure of the youngest fully developed leaves provided an elevated CO2 assimilation capacity under red light compared with blue or white light, although the electron transport rate was lower. The stomatal opening was mainly stimulated by blue light. These spectrum-induced changes also depended on light intensity. When white light was used to activate the photosynthesis, the white light showed a similar light response to blue light regarding the electron transport processes and red light in terms of stomatal opening. In contrast, concerning CO2 assimilation characteristics, the white light resembled blue light at low and red light at high light intensities. These results indicate that the photosynthetic processes strongly interact with the light intensity and spectral composition. Furthermore, changes in spectral composition modified the primary metabolic processes as well. Red light induced the sugar accumulation, while more organic acids that belong to the respiration pathway were produced under blue and white lights. These changes occurred even within a short (30 min) time frame. These results also draw attention to the importance of the light environment used during the measurements of the photosynthetic activity of plants and/or sample collections.


Subject(s)
Carbon Dioxide , Spinacia oleracea , Spinacia oleracea/metabolism , Carbon Dioxide/metabolism , Photosynthesis , Light , Electron Transport , Plant Leaves/metabolism
4.
J Pharm Biomed Anal ; 235: 115611, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37542828

ABSTRACT

Enrichment of pharmaceutically important vinca alkaloids, vinblastine and vincristine, in the leaves of Madagascar periwinkle (Catharanthus roseus) plants through different pre- or postharvest treatments or cultivation conditions, e.g., exposing the plants to UV-irradiation, has been in focus for decades. Controlled LED environment in the visible light range offers the possibility of monitoring the changes in the concentration of metabolites in the vinca alkaloid-related pathway without involving UV-related abiotic stress. In the frame of our targeted metabolomics approach, 64 vinca alkaloids and metabolites were screened with the help of a UPLC-ESI-QTOF-MS instrumental setup from the leaf extracts of C. roseus plants grown in chambers under control (medium light), low light, and high blue / high red/ high far-red conditions. Out of the 14 metabolites that could be assigned either unambiguously with authentic standards or tentatively with high resolution mass spectrometry-based methods, all three dimer vinca alkaloids, that is, 3',4'-anhydrovinblastine, vinblastine and vincristine showed an at least nine-fold enrichment under high blue irradiation when compared with the control conditions: final concentrations of 961 mg kg-1 dry weight, 33.8 mg kg-1 dry weight, and 11.7 mg kg-1 dry weight could be achieved, respectively. As supported by multivariate statistical analysis, the key metabolites of the vinca alkaloid pathway were highly represented among the metabolites that were specifically stimulated by high blue light application.


Subject(s)
Antineoplastic Agents , Catharanthus , Vinca Alkaloids , Vinca Alkaloids/analysis , Vinca Alkaloids/metabolism , Vinblastine/metabolism , Catharanthus/metabolism , Vincristine , Antineoplastic Agents/metabolism , Metabolomics
5.
Plants (Basel) ; 12(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36986924

ABSTRACT

High voltage electrical discharge (HVED) is an eco-friendly low-cost method based on the creation of plasma-activated water (PAW) through the release of electrical discharge in water which results in the formation of reactive particles. Recent studies have reported that such novel plasma technologies promote germination and growth but their hormonal and metabolic background is still not known. In the present work, the HVED-induced hormonal and metabolic changes were studied during the germination of wheat seedlings. Hormonal changes including abscisic acid (ABA), gibberellic acids (GAs), indol acetic acid (IAA) and jasmonic acid (JA) and the polyphenol responses were detected in the early (2nd day) and late (5th day) germination phases of wheat as well as their redistribution in shoot and root. HVED treatment significantly stimulated germination and growth both in the shoot and root. The root early response to HVED involved the upregulation of ABA and increased phaseic and ferulic acid content, while the active form of gibberellic acid (GA1) was downregulated. In the later phase (5th day of germination), HVED had a stimulatory effect on the production of benzoic and salicylic acid. The shoot showed a different response: HVED induced the synthesis of JA_Le_Ile, an active form of JA, and provoked the biosynthesis of cinnamic, p-coumaric and caffeic acid in both phases of germination. Surprisingly, in 2-day-old shoots, HVED decreased the GA20 levels, being intermediate in the synthesis of bioactive gibberellins. These HVED-provoked metabolic changes indicated a stress-related response that could contribute to germination in wheat.

6.
Plant J ; 112(6): 1377-1395, 2022 12.
Article in English | MEDLINE | ID: mdl-36308414

ABSTRACT

Carotenoids contribute to a variety of physiological processes in plants, functioning also as biosynthesis precursors of ABA and strigolactones (SLs). SL biosynthesis starts with the enzymatic conversion of all-trans-ß-carotene to 9-cis-ß-carotene by the DWARF27 (D27) isomerase. In Arabidopsis, D27 has two closely related paralogs, D27-LIKE1 and D27-LIKE2, which were predicted to be ß-carotene-isomerases. In the present study, we characterised D27-LIKE1 and identified some key aspects of its physiological and enzymatic functions in Arabidopsis. d27-like1-1 mutant does not display any strigolactone-deficient traits and exhibits a substantially higher 9-cis-violaxanthin content, which is accompanied by a slightly higher ABA level. In vitro feeding assays with recombinant D27-LIKE1 revealed that the protein exhibits affinity to all ß-carotene isoforms but with an exclusive preference towards trans/cis conversions and the interconversion between 9-cis, 13-cis and 15-cis-ß-carotene forms, and accepts zeaxanthin and violaxanthin as substrates. Finally, we present evidence showing that D27-LIKE1 mRNA is phloem mobile and D27-LIKE1 is an ancient isomerase with a long evolutionary history. In summary, we demonstrate that D27-LIKE1 is a carotenoid isomerase with multi-substrate specificity and has a characteristic preference towards the catalysation of cis/cis interconversion of carotenoids. Therefore, D27-LIKE1 is a potential regulator of carotenoid cis pools and, eventually, SL and ABA biosynthesis pathways.


Subject(s)
Arabidopsis , Carotenoids , Carotenoids/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , beta Carotene/metabolism , Isomerases/chemistry , Isomerases/genetics , Isomerases/metabolism
7.
Front Plant Sci ; 13: 801656, 2022.
Article in English | MEDLINE | ID: mdl-35392509

ABSTRACT

Chili is widely used as a food additive and a flavouring and colouring agent and also has great importance in health preservation and therapy due to the abundant presence of many bioactive compounds, such as polyphenols, flavonoids, carotenoids, and capsaicinoids. Most of these secondary metabolites are strong antioxidants. In the present study, the effect of light intensity and spectral composition was studied on the growth, flowering, and yield of chilli together with the accumulation of secondary metabolites in the fruit. Two light intensities (300 and 500 µmol m-2 s-1) were applied in different spectral compositions. A broad white LED spectrum with and without FR application and with blue LED supplement was compared to blue and red LED lightings in different (80/20 and 95/5%) blue/red ratios. High light intensity increased the harvest index (fruit yield vs. biomass production) and reduced the flowering time of the plants. The amount of secondary metabolites in the fruit varied both by light intensity and spectral compositions; phenolic content and the radical scavenging activity were stimulated, whereas capsaicin accumulation was suppressed by blue light. The red colour of the fruit (provided by carotenoids) was inversely correlated with the absolute amount of blue, green, and far-red light. Based on the results, a schematic model was created, representing light-dependent metabolic changes in chilli. The results indicated that the accumulation of secondary metabolites could be modified by the adjustment of light intensity and spectral composition; however, different types of metabolites required different light environments.

8.
Int J Mol Sci ; 23(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35409181

ABSTRACT

Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass Aegilops biuncialis has high ß-glucan content, which makes it an attractive gene source to develop wheat lines with modified fiber composition. In order to support introgression breeding, this work examined genetic variability in grain ß-glucan, pentosan, and protein content in a collection of Ae. biuncialis. A large variation in grain protein and edible fiber content was revealed, reflecting the origin of Ae. biuncialis accessions from different eco-geographical habitats. Association analysis using DArTseq-derived SNPs identified 34 QTLs associated with ß-glucan, pentosan, water-extractable pentosan, and protein content. Mapping the markers to draft chromosome assemblies of diploid progenitors of Ae. biuncialis underlined the role of genes on chromosomes 1Mb, 4Mb, and 5Mb in the formation of grain ß-glucan content, while other QTLs on chromosome groups 3, 6, and 1 identified genes responsible for total- and water-extractable pentosan content. Functional annotation of the associated marker sequences identified fourteen genes, nine of which were identified in other monocots. The QTLs and genes identified in the present work are attractive targets for chromosome-mediated gene transfer to improve the health-promoting properties of wheat-derived foods.


Subject(s)
Aegilops , beta-Glucans , Aegilops/genetics , Dietary Fiber , Genes, Plant , Plant Breeding , Quantitative Trait Loci , Triticum/genetics , Water
9.
Nucleic Acids Res ; 50(4): 1927-1950, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35100405

ABSTRACT

Elongation factor TFIIS (transcription factor IIS) is structurally and biochemically probably the best characterized elongation cofactor of RNA polymerase II. However, little is known about TFIIS regulation or its roles during stress responses. Here, we show that, although TFIIS seems unnecessary under optimal conditions in Arabidopsis, its absence renders plants supersensitive to heat; tfIIs mutants die even when exposed to sublethal high temperature. TFIIS activity is required for thermal adaptation throughout the whole life cycle of plants, ensuring both survival and reproductive success. By employing a transcriptome analysis, we unravel that the absence of TFIIS makes transcriptional reprogramming sluggish, and affects expression and alternative splicing pattern of hundreds of heat-regulated transcripts. Transcriptome changes indirectly cause proteotoxic stress and deterioration of cellular pathways, including photosynthesis, which finally leads to lethality. Contrary to expectations of being constantly present to support transcription, we show that TFIIS is dynamically regulated. TFIIS accumulation during heat occurs in evolutionary distant species, including the unicellular alga Chlamydomonas reinhardtii, dicot Brassica napus and monocot Hordeum vulgare, suggesting that the vital role of TFIIS in stress adaptation of plants is conserved.


Subject(s)
Arabidopsis , Transcription Factors, General , Arabidopsis/genetics , Arabidopsis/physiology , Heat-Shock Response , RNA Polymerase II/metabolism , Transcription Factors, General/metabolism , Transcription, Genetic , Transcriptional Elongation Factors/metabolism
10.
Int J Mol Sci ; 22(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34445308

ABSTRACT

Extreme temperatures are among the most important stressors limiting plant growth and development. Results indicate that light substantially influences the acclimation processes to both low and high temperatures, and it may affect the level of stress injury. The interaction between light and temperature in the regulation of stress acclimation mechanisms is complex, and both light intensity and spectral composition play an important role. Higher light intensities may lead to overexcitation of the photosynthetic electron transport chain; while different wavelengths may act through different photoreceptors. These may induce various stress signalling processes, leading to regulation of stomatal movement, antioxidant and osmoregulation capacities, hormonal actions, and other stress-related pathways. In recent years, we have significantly expanded our knowledge in both light and temperature sensing and signalling. The present review provides a synthesis of results for understanding how light influences the acclimation of plants to extreme low or high temperatures, including the sensing mechanisms and molecular crosstalk processes.


Subject(s)
Cold-Shock Response , Heat-Shock Response , Photosynthesis , Plants/metabolism , Plants/radiation effects , Signal Transduction , Sunlight
11.
Physiol Plant ; 171(2): 217-231, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32909668

ABSTRACT

The aim of the present work was to better understand the molecular mechanisms of heat acclimation processes in cereals. A large number of winter and spring wheat, barley and oat varieties were grown under either control conditions (22/20°C) or under a mild heat stress (30°C) that induce the acclimation processes. The temperature dependence of chlorophyll a fluorescence induction and gas exchange parameters showed that heat acclimation increased the thermotolerance of the photosynthetic apparatus, but these changes did not differ sharply in the winter-spring type cereals. Similarly, to wheat, elevated temperature also led to increasing transpiration rate and reduced water use efficiency in barley and oat plants. A non-targeted metabolomic analysis focusing on polar metabolites in two selected barley (winter type Mv Initium and spring type Conchita) and in two oat varieties (winter type Mv Hópehely and spring type Mv Pehely) revealed substantial differences between both the two species and between the acclimated and non-acclimated plants. Several compounds, including sugars, organic acids, amino acids and alcohols could be separated and detected. The expression level of the CYP707, HSP90, galactinol synthase, raffinose synthase and α-galactosidase genes showed genotype-dependent changes after 1 day; however, the CYP707 was the only one, which was still upregulated in at least some of the genotypes. Results suggest that heat acclimation itself does not require general induction of primary metabolites. However, induction of specific routes, e.g. the induction of the raffinose family oligosaccharides, especially the synthesis of galactinol, may also contribute the improved heat tolerance in cereals.


Subject(s)
Acclimatization , Edible Grain , Chlorophyll A , Photosynthesis , Temperature
12.
Sci Rep ; 10(1): 22327, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33339903

ABSTRACT

Aegilops biuncialis is a promising gene source to improve salt tolerance of wheat via interspecific hybridization. In the present work, the salt stress responses of wheat-Ae. biuncialis addition lines were investigated during germination and in young plants to identify which Aegilops chromosomes can improve the salt tolerance of wheat. After salt treatments, the Aegilops parent and the addition lines 2M, 3M and 3M.4BS showed higher germination potential, shoot and root growth, better CO2 assimilation capacity and less chlorophyll degradation than the wheat parent. The Aegilops parent accumulated less Na in the roots due to an up-regulation of SOS1, SOS2 and HVP1 genes, while it contained higher amount of proline, fructose, glucose, galactose, maltose and raffinose. In the leaves, lower Na level was accompanied by high amount of proline and increased expression of NHX2 gene. The enhanced accumulation of sugars and proline was also observed in the roots of 3M and 3M.4BS addition lines. Typical mechanism of 2M addition line was the sequestration of Na into the vacuole due to the increased expression of HVP1 in the roots and NHX2 in the leaves. These results suggest the Aegilops chromosomes 2M and 3M can improve salt tolerance of wheat in different way.


Subject(s)
Aegilops/genetics , Chromosomes, Plant/genetics , Salt Tolerance/genetics , Triticum/genetics , Germination/genetics , Hybridization, Genetic/genetics , Salt Tolerance/physiology , Sodium/metabolism , Triticum/physiology
14.
Plant Physiol Biochem ; 149: 75-85, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32058896

ABSTRACT

Cold-acclimation is essential for the development of adequate frost-hardiness in cereals and therefore sudden freezes can cause considerable damage to the canopy. However, timely adding of an appropriate signal in the absence of cold acclimation may also harden wheat for the upcoming freeze. The feasibility of the promising signal molecule methylglyoxal was tested here for such applications and the signal mechanism was studied in bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L. ssp. durum). Spraying with 10 mM methylglyoxal did not decrease the fresh weight and photosynthetic parameters in most wheat varieties at growth temperature (21 °C). Photosynthetic parameters even improved and chlorophyll content increased in some cases. Increased transcript level of glutathione-S-transferases and omega-3 fatty acid desaturases was detected by qPCR 6 h after the last methylglyoxal spray. Aldo-keto reductase and glyoxalase enzyme activities, as well as sorbitol content of wheat plants increased 24 h after the last 10 mM methylglyoxal spray in most of the cultivars. These mechanisms may explain the increased freezing survival of methylglyoxal pretreated wheat plants from less than 10% to over 30%. Our results demonstrate that exogenous methylglyoxal treatment can be safely added to wheat plants as preparatory treatment without detrimental effects but inducing some of the stress-protective mechanisms, which contribute to frost-hardiness.


Subject(s)
Aldehydes , Freezing , Pyruvaldehyde , Triticum , Adaptation, Physiological/drug effects , Aldehydes/metabolism , Photosynthesis , Pyruvaldehyde/pharmacology , Triticum/drug effects
15.
Front Plant Sci ; 10: 1454, 2019.
Article in English | MEDLINE | ID: mdl-31824525

ABSTRACT

Plant development is continually fine-tuned based on environmental factors. How environmental perturbations are integrated into the developmental programs and how poststress adaptation is regulated remains an important topic to dissect. Vegetative to reproductive phase change is a very important developmental transition that is complexly regulated based on endogenous and exogenous cues. Proper timing of flowering is vital for reproductive success. It has been shown previously that AGAMOUS LIKE 16 (AGL16), a MADS-box transcription factor negatively regulates flowering time transition through FLOWERING LOCUS T (FT), a central downstream floral integrator. AGL16 itself is negatively regulated by the microRNA miR824. Here we present a comprehensive molecular analysis of miR824/AGL16 module changes in response to mild and recurring heat stress. We show that miR824 accumulates gradually in response to heat due to the combination of transient transcriptional induction and posttranscriptional stability. miR824 induction requires heat shock cis-elements and activity of the HSFA1 family and HSFA2 transcription factors. Parallel to miR824 induction, its target AGL16 is decreased, implying direct causality. AGL16 posttranscriptional repression during heat stress, however, is more complex, comprising of a miRNA-independent, and a miR824-dependent pathway. We also show that AGL16 expression is leaf vein-specific and overlaps with miR824 (and FT) expression. AGL16 downregulation in response to heat leads to a mild derepression of FT. Finally, we present evidence showing that heat stress regulation of miR824/AGL16 is conserved within Brassicaceae. In conclusion, due to the enhanced post-transcriptional stability of miR824, stable repression of AGL16 is achieved following heat stress. This may serve to fine-tune FT levels and alter flowering time transition. Stress-induced miR824, therefore, can act as a "posttranscriptional memory factor" to extend the acute impact of environmental fluctuations in the poststress period.

16.
Front Plant Sci ; 10: 1531, 2019.
Article in English | MEDLINE | ID: mdl-31824545

ABSTRACT

Understanding the genetic diversity of Aegilops biuncialis, a valuable source of agronomical useful genes, may significantly facilitate the introgression breeding of wheat. The genetic diversity and population structure of 86 Ae. biuncialis genotypes were investigated by 32700 DArT markers with the simultaneous application of three statistical methods- neighbor-joining clustering, Principal Coordinate Analysis, and the Bayesian approach to classification. The collection of Ae. biuncialis accessions was divided into five groups that correlated well with their eco-geographic habitat: A (North Africa), B (mainly from Balkans), C (Kosovo and Near East), D (Turkey, Crimea, and Peloponnese), and E (Azerbaijan and the Levant region). The diversity between the Ae. biuncialis accessions for a phenological trait (heading time), which is of decisive importance in the adaptation of plants to different eco-geographical environments, was studied over 3 years. A comparison of the intraspecific variation in the heading time trait by means of analysis of variance and principal component analysis revealed four phenotypic categories showing association with the genetic structure and geographic distribution, except for minor differences. The detailed exploration of genetic and phenologic divergence provides an insight into the adaptation capacity of Ae. biuncialis, identifying promising genotypes that could be utilized for wheat improvement.

17.
PLoS One ; 14(12): e0226151, 2019.
Article in English | MEDLINE | ID: mdl-31856179

ABSTRACT

Many environmental stresses cause osmotic stress which induces several metabolic changes in plants. These changes often vary depending on the genotype, type and intensity of stress or the environmental conditions. In the current experiments, metabolic responses of wheat to osmotic stress induced by different kinds of osmolytes were studied under iso-osmotic stress conditions. A single wheat genotypes was treated with PEG-6000, mannitol, sorbitol or NaCl at such concentrations which reduce the osmotic potential of the culture media to the same level (-0.8MPa). The metabolic changes, including the accumulation of proline, glycine betaine (GB) and sugar metabolites (glucose, fructose, galactose, maltose and sucrose) were studied both in the leaves and roots together with monitoring the plant growth, changes in the photosynthetic activity and chlorophyll content of the leaves. In addition, the polyamine metabolism was also investigated. Although all osmolytes inhibited growth similarly, they induced different physiological and metabolic responses: the CO2 assimilation capacity, RWC content and the osmotic potential (ψπ) of the leaves decreased intensively, especially after mannitol and sorbitol treatments, followed by NaCl treatment, while PEG caused only a slight modification in these parameters. In the roots, the most pronounced decrease of ψπ was found after salt-treatments, followed by PEG treatment. Osmotic stress induced the accumulation of proline, glycine betaine and soluble sugars, such as fructose, glucose, sucrose and galactose in both the root and leaf sap. Specific metabolic response of roots and leaves under PEG included accumulation of glucose, fructose and GB (in the roots); sucrose, galactose and proline synthesis were dominant under NaCl stress while exposure to mannitol and sorbitol triggered polyamine metabolism and overproduction of maltose. The amount of those metabolites was time-dependent in the manner that longer exposure to iso-osmotic stress conditions stimulated the sugar metabolic routes. Our results showed that the various osmolytes activated different metabolic processes even under iso-osmotic stress conditions and these changes also differed in the leaves and roots.


Subject(s)
Osmosis/drug effects , Osmotic Pressure/drug effects , Seedlings/metabolism , Triticum/drug effects , Triticum/metabolism , Chlorophyll/metabolism , Genotype , Mannitol/pharmacology , Photosynthesis/drug effects , Polyamines/metabolism , Polyethylene Glycols/pharmacology , Seedlings/drug effects , Seedlings/growth & development , Sodium Chloride/pharmacology , Sorbitol/pharmacology , Sugars/metabolism , Triticum/genetics , Triticum/growth & development , Water/metabolism
18.
PLoS One ; 14(2): e0212411, 2019.
Article in English | MEDLINE | ID: mdl-30779775

ABSTRACT

Wheat is one of the most important cereals, whose growth and development is strongly limited by drought. This study investigated the physiological and metabolic response of six winter wheat cultivars to drought with the emphasis on the induction of dominant metabolites affected by the treatment and genotypes or both. The plants were exposed to a moderate (non-lethal) drought stress, which was induced by withholding watering for six days under controlled greenhouse conditions. A decline in CO2 assimilation (Pn) and transpiration rate, stomata closure, a decrease in relative water content (RWC) and increase of malondialdehyde content were observed in drought-treated plants of all cultivars. These changes were most pronounced in Ellvis, while Soissons was able to retain the higher RWC and Pn. Among the studied metabolites, sugars (sucrose, glucose, fructose, several disaccharides), organic acids (malic acid, oxalic acids), amino acids (proline, threonine, gamma-aminobutyric acid (GABA), glutamine) and sugar alcohols such as myo-inositol accumulated to higher levels in the plants exposed to drought stress in comparison with the control. The accumulation of several metabolites in response to drought differed between the genotypes. Drought induced the production of sucrose, malic acid and oxalic acid, unknown organic acid 1, unknown disaccharide 1, 2 and 3, GABA, L-threonine, glutamic acid in four (Soissons, Zitarka, Antonija or Toborzó) out of six genotypes. In addition, Soissons, which was the most drought tolerant genotype, accumulated the highest amount of unknown disaccharide 5, galactonic and phosphoric acids. The two most drought sensitive cultivars, Srpanjka and Ellvis, demonstrated different metabolic adjustment in response to the stress treatment. Srpanjka responded to drought by increasing the amount of glucose and fructose originated from hydrolyses of sucrose and accumulating unidentified sugar alcohols 1 and 2. In Ellvis, drought caused inhibition of photosynthetic carbon metabolism, as evidence by the decreased Pn, gs, RWC and accumulation levels of sugar metabolites (sucrose, glucose and fructose). The results revealed the differences in metabolic response to drought among the genotypes, which drew attention on metabolites related with general response and on those metabolites which are part of specific response that may play an important role in drought tolerance.


Subject(s)
Triticum/genetics , Triticum/metabolism , Water/metabolism , Droughts , Genotype , Photosynthesis/physiology , Plant Leaves/metabolism , Poaceae/genetics , Poaceae/metabolism
19.
PLoS One ; 14(2): e0211892, 2019.
Article in English | MEDLINE | ID: mdl-30721262

ABSTRACT

Wild relatives of wheat, such as Aegilops spp. are potential sources of genes conferring tolerance to drought stress. As drought stress affects seed composition, the main goal of the present study was to determine the effects of drought stress on the content and composition of the grain storage protein (gliadin (Gli), glutenin (Glu), unextractable polymeric proteins (UPP%) and dietary fiber (arabinoxylan, ß-glucan) components of hexaploid bread wheat (T. aestivum) lines containing added chromosomes from Ae. biuncialis or Ae. geniculata. Both Aegilops parents have higher contents of protein and ß-glucan and higher proportions of water-soluble arabinoxylans (determined as pentosans) than wheat when grown under both well-watered and drought stress conditions. In general, drought stress resulted in increased contents of protein and total pentosans in the addition lines, while the ß-glucan content decreased in many of the addition lines. The differences found between the wheat/Aegilops addition lines and wheat parents under well-watered conditions were also manifested under drought stress conditions: Namely, elevated ß-glucan content was found in addition lines containing chromosomes 5Ug, 7Ug and 7Mb, while chromosomes 1Ub and 1Mg affected the proportion of polymeric proteins (determined as Glu/Gli and UPP%, respectively) under both well-watered and drought stress conditions. Furthermore, the addition of chromosome 6Mg decreased the WE-pentosan content under both conditions. The grain composition of the Aegilops accessions was more stable under drought stress than that of wheat, and wheat lines with the added Aegilops chromosomes 2Mg and 5Mg also had more stable grain protein and pentosan contents. The negative effects of drought stress on both the physical and compositional properties of wheat were also reduced by the addition of these. These results suggest that the stability of the grain composition could be improved under drought stress conditions by the intraspecific hybridization of wheat with its wild relatives.


Subject(s)
Aegilops/genetics , Crosses, Genetic , Dietary Fiber/metabolism , Flour , Plant Proteins, Dietary , Triticum , Aegilops/growth & development , Dehydration , Plant Proteins, Dietary/biosynthesis , Plant Proteins, Dietary/genetics , Triticum/genetics , Triticum/growth & development
20.
PLoS One ; 14(12): e0227271, 2019.
Article in English | MEDLINE | ID: mdl-31891631

ABSTRACT

The effects of various light intensities and spectral compositions on glutathione and amino acid metabolism were compared in wheat. Increase of light intensity (low-normal-high) was accompanied by a simultaneous increase in the shoot fresh weight, photosynthetic activity and glutathione content. These parameters were also affected by the modification of the ratios of blue, red and far-red components (referred to as blue, pink and far-red lights) compared to normal white light. The photosynthetic activity and the glutathione content decreased to 50% and the percentage of glutathione disulfide (characterising the redox state of the tissues) in the total glutathione pool doubled in far-red light. The alterations in the level and redox state of the antioxidant glutathione resulted from the effect of light on its synthesis as it could be concluded from the changes in the transcription of the related genes. Modification of the light conditions also greatly affected both the amount and the ratio of free amino acids. The total free amino acid content was greatly induced by the increase of light intensity and was greatly reduced in pink light compared to the normal intensity white light. The concentrations of most amino acids were similarly affected by the light conditions as described for the total free amino acid content but Pro, Met, Thr, ornithine and cystathionine showed unique response to light. As observed for the amino acid levels, the expression of several genes involved in their metabolism also enhanced due to increased light intensity. Interestingly, the modification of the spectrum greatly inhibited the expression of most of these genes. Correlation analysis of the investigated parameters indicates that changes in the light conditions may affect growth through the adjustment of photosynthesis and the glutathione-dependent redox state of the tissues. This process modifies the metabolism of glutathione and amino acids at transcriptional level.


Subject(s)
Amino Acids/metabolism , Glutathione/metabolism , Light , Photosynthesis , Triticum/metabolism , Amino Acids/genetics , Glutathione/genetics , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...