Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Biochem Res Int ; 2024: 4667379, 2024.
Article in English | MEDLINE | ID: mdl-38606058

ABSTRACT

The rapid spread of multidrug-resistant bacteria has led to an increased risk of infectious diseases. Pseudomonas aeruginosa, in particular, poses a significant obstacle due to its propensity to rapidly acquire resistance to conventional antibiotics. This has resulted in an urgent need for the development of new classes of antibiotics that do not induce resistance. Antimicrobial peptides (AMPs) have been studied as potential small-molecule antibiotics due to their unique mode of action. In this study, peptides were extracted from the seeds of Phaseolus vulgaris (Fabaceae), and the antimicrobial activities of the extract were evaluated using microbroth dilution against five different microorganisms. The extract showed antimicrobial activity against all tested organisms with minimum inhibitory concentrations (MIC) of 2.5 mg/mL, except for Candida albicans and Pseudomonas aeruginosa, which had MICs of 1.25 mg/mL. The extract was also bacteriostatic for all tested organisms. The crude peptide extract from Phaseolus vulgaris was further studied for its antibiofilm activity against Pseudomonas aeruginosa, a common nosocomial pathogen associated with biofilm formation. The extract showed good antibiofilm activity at 1/2 MIC. The extract also inhibited the expression of pyocyanin and pyoverdine (virulence factors of P. aeruginosa whose expression is mediated by quorum sensing) by 82% and 66%, respectively. These results suggest that the peptide mix from Phaseolus vulgaris may inhibit biofilm formation and virulence factor expression by interfering with cell-to-cell communication in Pseudomonas aeruginosa. The ability of the extract to inhibit the growth and biofilm formation of all tested organisms indicates its potential as an antimicrobial agent that could be further studied for drug discovery.

2.
Environ Geochem Health ; 45(12): 9875-9889, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37878226

ABSTRACT

The concentration and bioaccessibility of potentially toxic metals, including As, Cd, Cr, Cu, Mn, Ni, Pb and Zn, were determined in surface soil samples from a mining community (Kenyasi) and a non-mining community (Sunyani) in Ghana, to investigate the contribution of mining activities to the environmental burden of potentially toxic metals. The study found significant differences in metal concentrations (p < 0.05) in As, Cd, Cu, Mn, Ni, and Zn, but no significant difference (p > 0.05) in Pb and Cr between the two communities. The study found a moderate correlation between pH and metal concentrations in the mining community and a moderate positive correlation with As, Cd, Cr, Cu, Ni, and Zn in the non-mining community. The distribution pattern revealed elevated levels of toxic metals in the southeastern corridor of the mining community, which is close to a gold mine. Most heavy metals were concentrated in the commercial community's southern zone, with more residents and private elementary schools. Metal bioaccessibility was variable, and except for Cu and Zn, the mean bioaccessibility was less than 50% for a given metal. Contamination factor, geoaccumulation index, and soil enrichment factor suggested very high contamination of Cd, and a considerable to moderate contamination of As, Ni, Zn, and Cu at both the mining and non-mining communities. The above observations and the pollution and risk indices employed in this study confirmed that the mining community was more polluted (PLI = 2.145) than the non-mining community (PLI = 1.372). The total metal hazard (HI) exceeded thresholds by three and four times at non-mining and mining sites. Regular monitoring is necessary, especially in the mining community, to prevent soil metal accumulation.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Soil , Environmental Monitoring , Ghana , Cadmium , Lead , Metals, Heavy/toxicity , Metals, Heavy/analysis , Soil Pollutants/toxicity , Soil Pollutants/analysis , Risk Assessment , China
3.
Toxicol Rep ; 11: 261-269, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37752909

ABSTRACT

Rapid urbanization and uncontrolled industrial activities in developing countries have raised concerns about potentially toxic metal contamination of the environment. This study assessed the levels of potentially toxic elements in soil and airborne particulate matter in the Suame and Asafo areas in the Kumasi metropolis, characterized by a high concentration of auto mechanic workshops and residential settlements. X-ray fluorescence analysis and inductively coupled plasma-mass spectrometry were used to determine the metal concentrations in the samples. The results showed high concentrations of potentially toxic elements in the soil and air samples, indicating contamination from automotive activities. Metals such as Co, Ni, Pb, and Zn were found to be present at concentrations (13.42-6101.58 mg/kg and 14.15-11.74 mg/kg for Suame and Asafo respectively) that pose potential health risks to exposed populations. Mathematical models such as pollution indices were used to assess the extent of contamination and determine the potential sources of the metals - the automotive repairs. The findings highlight the urgent need for environmental management and remediation strategies to mitigate the health risks of exposure to potentially toxic elements in the Kumasi metropolis automotive hub.

4.
Heliyon ; 9(3): e13174, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36873498

ABSTRACT

Food additives are used to enhance freshness, safety, appearance, flavour, and texture of food. Depending on the absorbed dose, exposure method, and length of exposure, heavy metals in diet may have a negative impact on human health. The X-Ray Fluorescence (XRF) Analyzer from Niton Thermo Scientific (Mobile Test S, NDTr-XL3t-86956, com 24) was used in this work to measure the heavy metal content in saltpetre, a food additive that mostly contains potassium nitrate. The average essential metal concentrations in the samples were determined to be 27044.27 ± 10905.18 mg kg-1, 24521.10 ± 6564.28 mg kg-1, 2418.33 ± 461.50 mg kg-1, and 4.615 ± 3.59 mg kg-1 for Ca, K, Fe and Zn respectively. Toxic metals (As, Pb) were present in the saltpetre samples at 4.13 ± 2.47 mg kg-1 and 2.11 ± 1.87 mg kg-1 average concentrations. No traces of mercury or cadmium were detected. Studies on exposure, health risks, and bio-accessibility identified arsenic as a significant risk factor for potential illnesses. The need to monitor heavy metal content of saltpetre and any potential health effects on consumers is brought to light by this study.

5.
Environ Geochem Health ; 45(7): 4515-4531, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36853522

ABSTRACT

Agbogbloshie in Accra, Ghana, was a center for informal e-waste recycling until it was closed recently. This study investigated the potential health risks of toxic metals (including As, Cd, Cu, Ni, Pb, Sb, and Zn) found in the surface soils based on their concentrations and in vitro bioaccessibility. Mean concentrations at the burning sites were As: 218; Cd: 65; Cr: 182; Cu: 15,841; Ni: 145; Pb: 6,106; Sb: 552; and Zn: 16,065 mg/kg while the dismantling sites had mean concentrations of As: 23; Cd: 38; Cr: 342; Cu: 3239; Ni: 96; Pb: 681; Sb: 104; and Zn: 1658 mg/kg. The findings confirmed the enrichment of potentially toxic metals at the dismantling and burning sites, exceeding international environmental soil quality guidelines. Based on the total metal concentrations, bioaccessibility, and calculated risk indices, the risks associated with incidental ingestion of soil-borne metal contaminants at the dismantling and burning sites were very high. Despite evidence of higher metal concentrations in the communities near the burning and dismantling sites, the human health risk associated with soil ingestion was significantly lower in the surrounding neighborhood.


Subject(s)
Electronic Waste , Metals, Heavy , Soil Pollutants , Humans , Metals, Heavy/toxicity , Metals, Heavy/analysis , Environmental Monitoring , Ghana , Electronic Waste/analysis , Cadmium , Lead , Soil Pollutants/toxicity , Soil Pollutants/analysis , Soil , Risk Assessment , China
6.
Environ Geochem Health ; 45(5): 1723-1737, 2023 May.
Article in English | MEDLINE | ID: mdl-35633438

ABSTRACT

This study investigated mercury pollution at two e-waste recycling sites in Ghana-Dagomba Line in Kumasi and Agbogbloshie in Accra. A total of 129 soil samples taken at 100 m and 50 m resolutions, respectively, for Dagomba Line and Agbogbloshie, were analysed for mercury using a Zeeman atomic absorption spectrometry. Mercury concentrations from the recycling sites (ranging from 0.11 to 7.57 mg/kg Dagomba Line, and 0.01-4.36 mg/kg at Agbogbloshie) were significantly higher than that of the surrounding areas (0.01-0.17 mg/kg in Kumasi and 0.01-2.18 mg/kg in Accra) and unpolluted control sites (0.05 mg/kg in Kumasi and 0.02 mg/kg in Accra). The dismantling sites at both locations had the highest mercury concentrations. Furthermore, the concentrations were significantly higher at the Dagomba Line site in Kumasi than at Agbogbloshie, even though the Dagomba Line site is relatively recent. The mercury concentrations at both sites exceeded the pollution prevention and abatement level of 0.1 mg/kg. However, the estimated human health risk showed no potential human health effects. Moreover, the mercury concentrations in water and sediment (0.12-7.69 ng/L and 0.02-0.28 ng/L for Dagomba Line and Agbogbloshie, respectively) were below the US EPA standards. Findings from this study show that e-waste recycling can contaminate the topsoil with mercury, irrespective of the scale of the activity.


Subject(s)
Electronic Waste , Mercury , Humans , Mercury/analysis , Ghana , Electronic Waste/analysis , Recycling , Water/analysis , Environmental Monitoring
7.
Environ Geochem Health ; 45(6): 3555-3565, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36449127

ABSTRACT

The dramatic upsurge of artisanal and small-scale gold mining (ASGM) activities in Ghana has resulted in environmental degradation, water pollution and human exposure to mercury-the main hazardous element used in gold extraction. This study evaluated the degree of human exposure to mercury based on the concentrations found in the air and soil samples taken at a resolution of 1 km2 across Konongo, a historic mining town in Ghana's Ashanti Region. The highest atmospheric mercury concentration was 193 ng/m3, which is much higher than the levels the European Union and Japan allowed, which are 10 ng/m3 and 40 ng/m3, respectively. The concentration in the soil was 3.6 mg Hg/kg, which is around ten times higher than the background concentration in nature. Additionally, the soil concentrations were higher above the worrisome levels of soil contamination in agricultural land (4 mg/kg) and industrial areas (16 mg/kg), respectively. Soils are extremely contaminated with mercury at sites artisanal mining activities take place. The concentrations of mercury in the air and soils were significantly higher (p < 0.5) at locations of prominent mining activities compared to areas not close to mining sites. The inhabitants of the Konongo community are therefore exposed to mercury, most likely emitted from artisanal mining activities. A non-carcinogenic risk is posed to the people by inhaling mercury vapour through the air and vapourisation from the soil. Children are exposed to a higher risk than adults as they receive higher daily doses of mercury than adults.


Subject(s)
Mercury , Adult , Child , Humans , Mercury/toxicity , Mercury/analysis , Soil , Ghana , Gold , Atmosphere , Environmental Monitoring
8.
Toxicol Rep ; 10: 46-55, 2023.
Article in English | MEDLINE | ID: mdl-36583134

ABSTRACT

Pesticides are widely used in Ghana, especially in cocoa farming. However, the practice is suboptimal and unsupervised. Incorrect use of these chemicals can seriously harm human health, the environment, and economies that rely on these farmers' output. The study assessed cocoa farmers' pesticide knowledge, practices, and risk perception. Four hundred and four cocoa farmers were chosen randomly from 26 communities in four cocoa-growing regions of Ghana to answer questions about their risk knowledge, awareness, and practices, including personal protective equipment, storage and disposal of leftover pesticides, and used containers. The study revealed that 87% of the respondents belonged to cooperatives and certification groups. There was a significant positive relationship between group membership and benefits derived from inputs and training in pesticide use. About 70% of insecticides used were approved by the Ghana Cocoa Board, with neonicotinoids and pyrethroids being the most highly used insecticide classes in cocoa farms. Although farmers claimed adequate pesticide knowledge, this did not translate into practice, with the majority exhibiting improper pesticide storage, application, and disposal practices. Farmers appeared to know a lot but lacked the skills and attitude to put their knowledge to use. The improper practices appear to manifest in a variety of health symptoms experienced by farmers as a result of chemical exposure. The findings from this study suggest that cocoa farmers in Ghana require adequate practical training and support on pesticide use to reduce their associated health risks, protect the environment and ensure sustainable cocoa production in the world's second-largest cocoa bean exporter.

9.
Toxicol Rep ; 9: 1491-1500, 2022.
Article in English | MEDLINE | ID: mdl-36518454

ABSTRACT

The presence of five antibiotics (metronidazole, ciprofloxacin, amoxicillin, doxycycline, and chloramphenicol) and four analgesics (diclofenac, ibuprofen, paracetamol, and caffeine) were investigated in water and soil samples from the Sunyani municipality, Ghana. Liquid samples were collected from hospital effluents, sachet drinking water, municipal waterworks, river Tano, and dumpsite leachates, while soil samples were collected from dumpsites and municipal waterworks. All samples were prepared using solid-phase extraction (SPE) and analyzed via an HPLC- PDA method. All antibiotics analyzed, apart from metronidazole, were detected either in soil or water samples. Doxycycline and ciprofloxacin were present in almost all liquid samples. The investigated hospital effluents had antibiotic concentrations of up to 2.93 mg/L for doxycycline and 4.74 mg/L for ciprofloxacin. The highest concentration of any antibiotic found was 8.76 mg/L of amoxicillin in hospital effluents. The maximum concentration of analgesics in liquid samples analyzed was 3.20 mg/L (paracetamol) and 3.00 mg/kg (caffeine) in soil samples. Ecological risk assessment indicated that the pharmaceuticals pose a possible risk to some aquatic organisms. The findings from this study showed the presence of these pharmaceuticals at concentrations that could impact the ecosystem. Consistent monitoring of environmental levels and pursuing the development and implementation of a suitable remediation program is needed.

10.
Article in English | MEDLINE | ID: mdl-36072414

ABSTRACT

This work focused on characterizing the chemical constituents and evaluating the antioxidant and antimicrobial activities of the essential oils obtained from the fruit and leaves of Spondias mombin-a flowering plant of the Anacardiaceae family. Essential oils were extracted through steam distillation and characterized by gas chromatography-mass spectrometry. For the fruit essential oil, 35 compounds were obtained, and 25 compounds were identified in the leaf essential oil. The dominant compounds present in the fruit essential oil were (E)-ethyl cinnamate (14.06%) and benzyl benzoate (12.27%). Methyl salicylate (13.05%) and heptacosane (12.69%) were the abundant compounds in the leaf essential oil. The antioxidant activity of the essential oils was evaluated via phosphomolybdenum, hydrogen peroxide scavenging, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, and thiobarbituric acid reactive substances (TBARS) assays. The total antioxidant capacity of fruit and leaf essential oils was 48.5 ± 0.7 µg/gAAE and 48.5 ± 0.7 µg/g AAE, respectively. The half maximal scavenging concentrations of the essential oils in the hydrogen peroxide; DPPH and TBARS assays ranged from 252.2 µg/mL to 2288 µg/mL. The antimicrobial activity of the essential oils was tested using broth dilution and disc diffusion assays against eight microorganisms. The essential oils exhibited broad-spectrum antimicrobial activity against the microorganisms with minimum inhibitory concentrations of 9.75-50 mg/mL. Also, the zones of inhibition of the oils ranged from 12 mm to 25 mm. The biofilm inhibitory activities of the oils were dose-dependent with BIC50 values of 42.49 ± 0.1 mg/mL and 97.34 ± 0.6 mg/mL for fruit and leaf essential oils, respectively. Molecular docking studies revealed that the antibiofilm action of the fruit and leaf essential oils could be due to inhibition of the quorum sensing protein, LasR. The results suggest a possible application of the oils as antioxidant and antimicrobial agents.

11.
Chemosphere ; 307(Pt 1): 135553, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35780981

ABSTRACT

Mercury usage in Artisanal Small Scale Gold Mining is a major anthropogenic source of mercury in the environment. In this study, mercury pools and fluxes have been established for Ghana, which has a large ASGM sector, based on estimated losses of mercury to the environment, deposition calculated with GLEMOS, a global long-range transport model for mercury in air, and mercury measured in soils and water in Ghana. A model for mercury in soils and water of Ghana with a resolution of 5 × 5 km2 and a monthly or yearly time step has been developed to assess the regional increase in soil and water concentrations that can be attributed to anthropogenic sources and to simulate scenarios into the future. The model has been calibrated to reproduce present-day mercury concentration in the soil (average 0.0193 mg kg-1) with current deposition calculated with the long-range transport model and past years' deposition based on a scenario for the historic development of the mining activity. This calculation gives an average increase in soil concentrations from anthropogenic sources of 22%. The model gives a fair description of the regional differences in soil concentrations but underestimates concentrations in regions with intense mining activity and overestimates concentrations in regions with less mining when using deposition from the long-range model as input.


Subject(s)
Mercury , Environmental Monitoring , Ghana , Gold , Mercury/analysis , Soil , Water
12.
J Environ Public Health ; 2022: 6113346, 2022.
Article in English | MEDLINE | ID: mdl-35664422

ABSTRACT

The occurrence of pharmaceuticals in the environment is a global challenge. Pharmaceuticals such as antibiotics and analgesics have been reported in various environmental matrices at varying concentrations. The major disposal route for unused and expired pharmaceuticals in Ghana is throwing them into dustbins. Although there are laws on the proper disposal patterns of drugs, these laws are poorly implemented. Sunyani is a fast-growing community with several health facilities that dispense medications daily. The purchase and use of medications among households are also high. However, no data exist on the disposal patterns of pharmaceuticals within the Sunyani Municipality. This study aims to identify the disposal patterns for unused and expired medications by households and pharmacies within the Sunyani Municipality, Ghana. A descriptive cross-sectional study was conducted among 400 persons in homes and 35 persons from randomly selected pharmacies and over-the-counter medication shops (OTCMs) within the Sunyani Municipality. A face-to-face interview approach using structured questionnaires for each respondent was employed. Household respondents disposed of unused and expired medications mainly through dumping in garbage cans (70.8%), incineration (11.5%), and flushing down the sink (9%). Pharmaceutical shop respondents also disposed of unused and expired medications into dump cans, by incineration, through the Food and Drugs Authority of Ghana, and took back to pharmaceutical wholesalers. Disposal practices observed in this study by households and pharmacy respondents were largely inappropriate. This could be due to the lack of education on the proper disposal patterns available to these respondents. It is recommended that guidelines on safe disposal be put in place, and a structured procedure for collecting unused and expired pharmaceuticals should be introduced.


Subject(s)
Pharmacies , Refuse Disposal , Cross-Sectional Studies , Ghana , Nonprescription Drugs , Refuse Disposal/methods , Surveys and Questionnaires
13.
Environ Geochem Health ; 44(2): 497-509, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33141377

ABSTRACT

Over 1000 people make a living by processing electronic and electrical waste (E-waste) and scrap metals for the recovery of valuable metals and integrated circuits at Dagomba Line, Kumasi, Ghana. The processing includes activities such as dismantling, open burning and open dumping of E-waste which can potentially release toxic metals into the environment and thus impact the health of recyclers and nearby residents. This study investigated the distribution of toxic metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Sb and Zn) in surface soils at the E-waste recycling sites and determined the associated human health risk via ingestion incorporating bioaccessibility measurements. Metal concentrations in the activity sites were highly elevated, significantly higher than those in the surrounding area and exceeded international soil quality guidelines such as the Canadian soil quality guidelines for residential land use and the Dutch Intervention Value. Bioaccessibility was high for Pb (70.8%), Cd (64.1%), Cu (62.3%) and Ni (53.6%) which could be credited to the existence of oxidized species as a result of the E-waste burning. Non-carcinogenic effects were unacceptably high (hazard indices > 1) at 14 out of 31 sites, and the cancer risk for arsenic for adult workers was greater than 1 × 10-5 at five of the sampling sites.


Subject(s)
Electronic Waste , Metals, Heavy , Soil Pollutants , Adult , Canada , China , Eating , Electronic Waste/analysis , Environmental Monitoring , Ghana , Humans , Metals, Heavy/analysis , Metals, Heavy/toxicity , Recycling , Risk Assessment , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
14.
Int J Environ Health Res ; 32(2): 426-436, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32482117

ABSTRACT

The presence of metal contaminants in agricultural soils and subsequent uptake by food crops can pose serious human health risk. In this study, we assessed the levels of toxic metals - arsenic, chromium, copper, iron, manganese, nickel, and zinc - in soils and some edible root tuber crops from two gold mining and two non-mining communities in Ghana to evaluate the potential human health risks associated with exposure to these metals. Concentrations of the metals in 154 soil and edible root tuber samples were analyzed using field portable x-ray fluorescence spectrometer prior to confirmation by inductively coupled plasma mass spectrometry. Bioaccessibility of the metals was determined using an in vitro physiologically based extraction technique. Concentrations of the metals were generally higher in the gold mining communities than in the non-mining communities. The contamination indices indicated low to moderate contamination of the soil and food crops. Bioaccessibility for the metals varied from 1.7% (Fe) to 62.3 (Mn). Overall, the risks posed by the metals upon consumption of the tubers were low.


Subject(s)
Metals, Heavy , Soil Pollutants , Agriculture , Environmental Monitoring , Ghana , Gold , Humans , Metals, Heavy/analysis , Mining , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
15.
Biol Trace Elem Res ; 200(4): 1518-1530, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34191217

ABSTRACT

There has been a concern of metal contamination from the mining areas which could expose the population to toxic metal through consumption of food products in the regions. Therefore, the study was conducted to analyze 18 elements using X-ray fluorescence analyzer and to assess for metal exposure through dietary intakes. Dietary recall survey instrument was used to collect consumption, demographic, and anthropometric data from 308 consumers in life-stage groups: toddlers, adolescents, and adults. Cassava, maize, rice, tomato, and yam indigenous diet samples (66) from the gold mining regions of Ghana were obtained by purposively sampling from street vendors. Principal component analysis was used to apportion pollution source. Health risks due to dietary elements were quantified using US EPA probabilistic protocols for cancer and non-cancer disease endpoints. Deficiency and overage risks of essential elements were tested against reference nutrient intakes. The element-diet-location mode of principal component analysis separated cassava and maize diets as significant vehicles for both essential and toxic elements apportioned to mining pollution source. The chronic daily intake trend revealed a preponderance for arsenic (maize: toddlers 0.009, adolescents 0.025 adults 0.010 mg/kg-d) and lead (maize: toddlers 0.009, adolescents 0.026, adults 0.010 mg/kg-d) exposure through maize diets compared to cassava diets. The hazard quotient showed (HQ > 1) life-stage risk differentiation for barium, although there were cumulative and pervasive health risks for all age groups based on the hazard index (Ag, Ba, Cd, Co, Hg, Mn, Mo, Sb, Sn, Sr, U, V, W, and Zr). The likely cancer risk (mode) for all life-stage groups (3 × 10-6-1 × 10-2) were also high in that they exceeded the 1 × 10-6 safety threshold. The modal margin of exposure (MoE < 1) alerted high public health concern due to lead-induced toxicities among all life-stage groups through all diet vehicles. Regarding nutritional adequacy, there were possible overage risks associated with selenium, including deficiency risks for calcium, potassium, and zinc for all life-stage groups. Toddlers and adolescents were susceptible to iron deficiency risks through cassava diets and iron overage risks through maize diets.


Subject(s)
Mercury , Metals, Heavy , Diet , Gold , Mercury/analysis , Metals, Heavy/analysis , Mining , Risk Assessment
16.
Environ Monit Assess ; 194(1): 38, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34935079

ABSTRACT

The effects of urbanization such as population upsurge, increased industrialization, urban agriculture, and rural-urban migration of persons exert pressure on the limited water resources in most cities. This study investigated the impact of human activities on the water and sediment quality of the three main rivers (Wiwi, Subin, and Suntre) in Kumasi, the second-largest city in Ghana. The physicochemical parameters and the concentrations of contaminants, including heavy metals, polycyclic aromatic hydrocarbons, pesticide residues, and microbial loads in the rivers, were linked to the specific human activities at the riverbanks. While all the 37 pesticide residues investigated in river sediments had concentrations below the detection limits (0.005 mg/kg for organochlorines, 0.010 mg/kg for organophosphates, and 0.010 mg/kg for synthetic pyrethroids), the study showed that the sediments are polluted with petrogenic and pyrogenic polycyclic aromatic hydrocarbons. River Subin, the most polluted among the three rivers, recorded benzo[e]pyrene concentrations up to 47,169 µg/kg. The geoaccumulation index and concentration factors show that the rivers are highly contaminated with metals such as cadmium, chromium, mercury, and arsenic and are related to human activities. The microbial quality of the rivers was poor, recording specific microbial loads of 6.8, 4.1, and 1.5 × 107 counts/100 mL respectively for Wiwi, Subin, and the Suntre Rivers. The three water bodies are therefore not suitable for recreational and irrigational purposes.


Subject(s)
Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Environmental Monitoring , Geologic Sediments , Ghana , Human Activities , Humans , Metals, Heavy/analysis , Metals, Heavy/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Quality
17.
Heliyon ; 7(9): e08039, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34622051

ABSTRACT

The use of principal component analysis (PCA) for soil heavy metals characterization provides useful information for decision making and policies regarding the potential sources of soil contamination. However, the concentration of heavy metal pollutants is spatially heterogeneous. Accounting for such spatial heterogeneity in soil heavy metal pollutants will improve our understanding with respect to the distribution of the most influential soil heavy metal pollutants. In this study, geographically weighted principal component analysis (GWPCA) was used to describe the spatial heterogeneity and connectivity of soil heavy metals in Kumasi, Ghana. The results from the conventional PCA revealed that three principal components cumulatively accounted for 86% of the total variation in the soil heavy metals in the study area. These components were largely dominated by Fe and Zn. The results from the GWPCA showed that the soil heavy metals are spatially heterogeneous and that the use of PCA disregards this considerable variation. This spatial heterogeneity was confirmed by the spatial maps constructed from the geographically weighted correlations among the variables. After accounting for the spatial heterogeneity, the proportion of variance explained by the three geographically weighted principal components ranged between 85% and 89%. The first three identified GWPC were largely dominated by Fe, Zn and As, respectively. The location of the study area where these variables are dominated provides information for remediation.

18.
Environ Pollut ; 284: 116945, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33906042

ABSTRACT

The use of mercury in small-scale gold mining is globally the largest anthropogenic source of mercury in the environment. In countries like Ghana, where small-scale gold mining is a highly important economic sector, the activity is also expected to cause local pollution. This study is based on a hypothesis that the mining activity in Ghana is causing more widespread soil pollution also outside active mining sites, and that the main part of regional differences in soil concentrations of mercury might come from pollution. Little systematic and dependable data has been collected to assess the extent of mercury contamination of soils in areas outside active mining areas. The regional aspect of mercury pollution from mining has not been studied in Ghana or other countries with a large small-scale gold mining sector. Systematic collection of soil samples on a 25 × 25 km2 net covering the entire country was carried out to ensure the representativeness of data and to allow calculation of spatial trends. The soil concentrations found in one-third of the country, where most intensive mining takes place, are three times higher than concentrations in the rest of the country. This difference cannot be explained by sources of natural variation in mercury concentrations but can be explained by decades of atmospheric deposition. It is therefore likely that the mining activity has caused a more widespread increase in soil concentrations, also outside active mining sites. The mercury concentrations found are on average 0.024 mg kg-1, which is low compared to published studies from other countries and regions and estimated world averages. All measured concentrations are well below soil quality criteria for human health. The build-up of soil concentrations in the mining area is still problematic because mercury is a hazardous substance in the environment.


Subject(s)
Mercury , Soil Pollutants , Environmental Monitoring , Environmental Pollution , Ghana , Gold , Humans , Mercury/analysis , Mining , Soil , Soil Pollutants/analysis
19.
Environ Sci Process Impacts ; 23(4): 569-579, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33565550

ABSTRACT

While occupational inhalation exposure to gaseous elemental mercury (GEM) has decreased in many workplaces as mercury is being removed from most products and processes, it continues to be a concern for those engaged in artisanal and small-scale gold mining or in recycling mercury-containing products. Recently, stationary and personal passive air samplers based on activated carbon sorbents and radial diffusive barriers have been shown to be suitable for measuring GEM concentrations across the range relevant for chronic health effects. Here, we used a combination of stationary and personal passive samplers to characterize the inhalation exposure to GEM of individuals living and working in two Ghanaian gold mining communities and working at a Norwegian e-waste recycling facility. Exposure concentrations ranging from <7 ng m-3 to >500 µg m-3 were observed, with the higher end of the range occurring in one gold mining community. Large differences in the GEM exposure averaged over the length of a workday between individuals can be rationalized by their activity and proximity to mercury sources. In each of the three settings, the measured exposure of the highest exposed individuals exceeded the highest concentration recorded with a stationary sampler, presumably because those individuals were engaged in an activity that generated or involved GEM vapors. High day-to-day variability in exposure for those who participated on more than one day, suggests the need for sampling over multiple days for reliable exposure characterization. Overall, a combination of personal and stationary passive sampling is a cost-effective approach that cannot only provide information on exposure levels relative to regulatory thresholds, but also can identify emission hotspots and therefore guide mitigation measures.


Subject(s)
Air Pollutants , Electronic Waste , Mercury , Occupational Exposure , Air Pollutants/analysis , Environmental Monitoring , Ghana , Gold , Humans , Inhalation Exposure , Mercury/analysis , Mining , Occupational Exposure/analysis
20.
Chemosphere ; 267: 128910, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33223211

ABSTRACT

Mercury pollution has pervaded many artisanal gold mining communities in the world, especially in developing countries. This study aimed to evaluate the potential risk of mercury pollution in soils in Gbani, an artisanal gold mining community in Ghana. Two hundred and thirty-seven soil samples were collected from within 0-10 cm depth, from active mining sites near residences, two transects in the community, waste soil from mining processing and the surroundings of the community. The measured mean mercury soil concentrations were 71 mg Hg/kg in active mining sites, and more moderate (2.7 mg Hg/kg) along transects through the community. Enrichment Factors classified the soils of the study area as being moderately to extremely severely contaminated with mercury. The spatial distribution shows the contamination of mercury is highest at residential facilities and decreases through the community to the outskirts covered by vegetation. Hazard quotients for non-cancer effects identified air-borne exposure pathways for humans to pose the largest risk, including the inhalation of vapour. The average hazard indices recorded were 0.5 (child) and 0.1 (adult) at the grid, 2 (child) and 0.3 (adult) at the transects, 1.6 (child) and 0.2 (adult) for waste soil and 76 (child) and 10.9 (adult) at the mining sites. The inhabitants of Gbani community are therefore at risk of non-cancer effects of mercury as the hazard quotients and hazard index were above one.


Subject(s)
Mercury , Soil Pollutants , Adult , Child , Environmental Monitoring , Ghana , Gold , Humans , Mercury/analysis , Mining , Risk Assessment , Soil , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...