Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Proteomics ; 250: 104389, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34601154

ABSTRACT

Some carboxydotrophs like Rhodospirillum rubrum are able to grow with CO as their sole source of energy using a Carbone monoxide dehydrogenase (CODH) and an Energy conserving hydrogenase (ECH) to perform anaerobically the so called water-gas shift reaction (WGSR) (CO + H2O → CO2 + H2). Several studies have focused at the biochemical and biophysical level on this enzymatic system and a few OMICS studies on CO metabolism. Knowing that CO is toxic in particular due to its binding to heme iron atoms, and is even considered as a potential antibacterial agent, we decided to use a proteomic approach in order to analyze R. rubrum adaptation in term of metabolism and management of the toxic effect. In particular, this study allowed highlighting a set of proteins likely implicated in ECH maturation, and important perturbations in term of cofactor biosynthesis, especially metallic cofactors. This shows that even this CO tolerant microorganism cannot avoid completely CO toxic effects associated with its interaction with metallic ions. SIGNIFICANCE: This proteomic study highlights the fact that even in a microorganism able to handle carbon monoxide and in some way detoxifying it via the intrinsic action of the carbon monoxide dehydrogenase (CODH), CO has important effects on metal homeostasis, metal cofactors and metalloproteins. These effects are direct or indirect via transcription regulation, and amplified by the high interdependency of cofactors biosynthesis.


Subject(s)
Hydrogenase , Rhodospirillum rubrum , Carbon Monoxide/metabolism , Carbon Monoxide/pharmacology , Hydrogenase/metabolism , Hydrogenase/pharmacology , Proteomics , Rhodospirillum rubrum/metabolism
2.
J Inorg Biochem ; 225: 111588, 2021 12.
Article in English | MEDLINE | ID: mdl-34530332

ABSTRACT

Nickel insertion into nickel-dependent carbon monoxide dehydrogenase (CODH) represents a key step in the enzyme activation. This is the last step of the biosynthesis of the active site, which contains an atypical heteronuclear NiFe4S4 cluster known as the C-cluster. The enzyme maturation is performed by three accessory proteins, namely CooC, CooT and CooJ. Among them, CooJ from Rhodospirillum rubrum is a histidine-rich protein containing two distinct and spatially separated Ni(II)-binding sites: a N-terminal high affinity site (HAS) and a histidine tail at the C-terminus. In 46 CooJ homologues, the HAS motif was found to be strictly conserved with a H(W/F)XXHXXXH sequence. Here, a proteome database search identified at least 150 CooJ homologues and revealed distinct motifs for HAS, featuring 2, 3 or 4 histidines. The purification and biophysical characterization of three representative members of this protein family showed that they are all homodimers able to bind Ni(II) ions via one or two independent binding sites. Initially thought to be present only in R. rubrum, this study strongly suggests that CooJ could play a significant role in CODH maturation or in nickel homeostasis.


Subject(s)
Metallochaperones , Nickel , Aldehyde Oxidoreductases/genetics , Amino Acid Motifs , Archaea/chemistry , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacteria/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Metallochaperones/chemistry , Metallochaperones/genetics , Metallochaperones/metabolism , Multienzyme Complexes/genetics , Multigene Family , Nickel/metabolism , Protein Binding
3.
FASEB J ; 35(8): e21681, 2021 08.
Article in English | MEDLINE | ID: mdl-34196428

ABSTRACT

The sodium/iodide symporter (NIS) expresses at the basolateral plasma membrane of the thyroid follicular cell and mediates iodide accumulation required for normal thyroid hormonogenesis. Loss-of-function NIS variants cause congenital hypothyroidism due to impaired iodide accumulation in thyroid follicular cells underscoring the significance of NIS for thyroid physiology. Here we report novel findings derived from the thorough characterization of the nonsense NIS mutant p.R636* NIS-leading to a truncated protein missing the last eight amino acids-identified in twins with congenital hypothyroidism. R636* NIS is severely mislocalized into intracellular vesicular compartments due to the lack of a conserved carboxy-terminal type 1 PDZ-binding motif. As a result, R636* NIS is barely targeted to the plasma membrane and therefore iodide transport is reduced. Deletion of the PDZ-binding motif causes NIS accumulation into late endosomes and lysosomes. Using PDZ domain arrays, we revealed that the PDZ-domain containing protein SCRIB binds to the carboxy-terminus of NIS by a PDZ-PDZ interaction. Furthermore, in CRISPR/Cas9-based SCRIB deficient cells, NIS expression at the basolateral plasma membrane is compromised, leading to NIS localization into intracellular vesicular compartments. We conclude that the PDZ-binding motif is a plasma membrane retention signal that participates in the polarized expression of NIS by selectively interacting with the PDZ-domain containing protein SCRIB, thus retaining the transporter at the basolateral plasma membrane. Our data provide insights into the molecular mechanisms that regulate NIS expression at the plasma membrane, a topic of great interest in the thyroid cancer field considering the relevance of NIS-mediated radioactive iodide therapy for differentiated thyroid carcinoma.


Subject(s)
Membrane Proteins/metabolism , Symporters/metabolism , Tumor Suppressor Proteins/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Membrane/metabolism , Codon, Nonsense , Congenital Hypothyroidism/genetics , Congenital Hypothyroidism/metabolism , Conserved Sequence , Dogs , Endosomes/metabolism , HEK293 Cells , Humans , Lysosomes/metabolism , Madin Darby Canine Kidney Cells , Membrane Proteins/chemistry , Membrane Proteins/genetics , Models, Molecular , Mutagenesis, Site-Directed , PDZ Domains/genetics , Protein Structure, Secondary , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Symporters/chemistry , Symporters/genetics , Thyroid Gland/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics
4.
Endocrinology ; 160(1): 156-168, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30496374

ABSTRACT

The Na+/iodide (I-) symporter (NIS), a glycoprotein expressed at the basolateral plasma membrane of thyroid follicular cells, mediates I- accumulation for thyroid hormonogenesis and radioiodide therapy for differentiated thyroid carcinoma. However, differentiated thyroid tumors often exhibit lower I- transport than normal thyroid tissue (or even undetectable I- transport). Paradoxically, the majority of differentiated thyroid cancers show intracellular NIS expression, suggesting abnormal targeting to the plasma membrane. Therefore, a thorough understanding of the mechanisms that regulate NIS plasma membrane transport would have multiple implications for radioiodide therapy. In this study, we show that the intracellularly facing carboxy-terminus of NIS is required for the transport of the protein to the plasma membrane. Moreover, the carboxy-terminus contains dominant basolateral information. Using internal deletions and site-directed mutagenesis at the carboxy-terminus, we identified a highly conserved monoleucine-based sorting motif that determines NIS basolateral expression. Furthermore, in clathrin adaptor protein (AP)-1B-deficient cells, NIS sorting to the basolateral plasma membrane is compromised, causing the protein to also be expressed at the apical plasma membrane. Computer simulations suggest that the AP-1B subunit σ1 recognizes the monoleucine-based sorting motif in NIS carboxy-terminus. Although the mechanisms by which NIS is intracellularly retained in thyroid cancer remain elusive, our findings may open up avenues for identifying molecular targets that can be used to treat radioiodide-refractory thyroid tumors that express NIS intracellularly.


Subject(s)
Cell Membrane/metabolism , Symporters/chemistry , Symporters/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Biological Transport , Cell Membrane/genetics , Humans , Iodides/metabolism , Leucine/genetics , Leucine/metabolism , Protein Transport , Rats , Sequence Alignment , Symporters/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism
5.
Biochem J ; 473(7): 919-28, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26831514

ABSTRACT

The sodium-iodide symporter (NIS) is an integral membrane protein that plays a crucial role in iodide accumulation, especially in the thyroid. As for many other membrane proteins, its intracellular sorting and distribution have a tremendous effect on its function, and constitute an important aspect of its regulation. Many short sequences have been shown to contribute to protein trafficking along the sorting or endocytic pathways. Using bioinformatics tools, we identified such potential sites on human NIS [tyrosine-based motifs, SH2-(Src homology 2), SH3- and PDZ (post-synaptic density-95/discs large tumour suppressor/zonula occludens-1)-binding motifs, and diacidic, dibasic and dileucine motifs] and analysed their roles using mutagenesis. We found that several of these sites play a role in protein stability and/or targeting to the membrane. Aside from the mutation at position 178 (SH2 plus tyrosine-based motif) that affects iodide uptake, the most drastic effect is associated with the mutation of an internal PDZ-binding motif at position 121 that completely abolishes NIS expression at the plasma membrane. Mutating the sites located on the C-terminal domain of the protein has no effect except for the creation of a diacidic motif that decreases the total NIS protein level without affecting its expression at the plasma membrane.


Subject(s)
Cell Membrane/metabolism , Symporters/metabolism , Amino Acid Motifs , Cell Membrane/genetics , HEK293 Cells , Humans , PDZ Domains , Protein Transport/physiology , Symporters/genetics , src Homology Domains
6.
Biochim Biophys Acta ; 1838(1 Pt B): 244-53, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23988430

ABSTRACT

The sodium/iodide symporter (NIS or SLC5A5) is an intrinsic membrane protein implicated in iodide uptake into thyroid follicular cells. It plays a crucial role in iodine metabolism and thyroid regulation and its function is widely exploited in the diagnosis and treatment of benign and malignant thyroid diseases. A great effort is currently being made to develop a NIS-based gene therapy also allowing the radiotreatment of nonthyroidal tumors. NIS is also expressed in other tissues, such as salivary gland, stomach and mammary gland during lactation, where its physiological role remains unclear. The molecular identity of the thyroid iodide transporter was elucidated approximately fifteen years ago. It belongs to the superfamily of sodium/solute symporters, SSS (and to the human transporter family, SLC5), and is composed of 13 transmembrane helices and 643 amino acid residues in humans. Knowledge concerning NIS structure/function relationship has been obtained by taking advantage of the high resolution structure of one member of the SSS family, the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT), and from studies of gene mutations leading to congenital iodine transport defects (ITD). This review will summarize current knowledge regarding the molecular characterization of NIS.


Subject(s)
Bacterial Proteins/chemistry , Iodides/chemistry , Sodium-Glucose Transport Proteins/chemistry , Sodium/chemistry , Symporters/chemistry , Thyroid Gland/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Iodides/metabolism , Ion Transport , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Sodium/metabolism , Sodium-Glucose Transport Proteins/genetics , Sodium-Glucose Transport Proteins/metabolism , Structural Homology, Protein , Symporters/genetics , Symporters/metabolism , Thyroid Gland/metabolism , Vibrio parahaemolyticus/chemistry , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/metabolism
7.
FEBS Lett ; 586(5): 617-21, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-21878327

ABSTRACT

The ubihydroquinone: cytochrome c oxidoreductase, or cytochrome bc(1), is a central component of photosynthetic and respiratory energy transduction pathways in many organisms. It contributes to the generation of membrane potential and proton gradient used for cellular energy production (ATP). The three-dimensional structures of cytochrome bc(1) indicate that its two monomers are intertwined to form a symmetrical homodimer. This unusual architecture raises the issue of whether the monomers operate independently, or function cooperatively during the catalytic cycle of the enzyme. In this review, recent progresses achieved in our understanding of the mechanism of function of dimeric cytochrome bc(1) are presented. New genetic approaches producing heterodimeric enzymes, and emerging insights related to the inter monomer electron transfer between the heme b cofactors of cytochrome bc(1) are described.


Subject(s)
Electron Transport Complex III/chemistry , Electron Transport , Heme/chemistry , Protein Multimerization , Electron Transport Complex III/genetics , Electron Transport Complex III/metabolism , Energy Metabolism , Heme/metabolism , Models, Molecular , Mutation , Protein Structure, Quaternary , Protons
8.
Biochemistry ; 50(10): 1651-63, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21261281

ABSTRACT

Cytochrome (cyt) bc(1) is a structural dimer with its monomers consisting of the Fe-S protein, cyt b, and cyt c(1) subunits. Its three-dimensional architecture depicts it as a symmetrical homodimer, but the mobility of the head domain of the Fe-S protein indicates that the functional enzyme exists in asymmetrical heterodimeric conformations. Here, we report a new genetic system for studying intra- and intermonomer interactions within the cyt bc(1) using the facultative phototrophic bacterium Rhodobacter capsulatus. The system involves two different sets of independently expressed cyt bc(1) structural genes carried by two plasmids that are coharbored by a cell without its endogenous enzyme. Our results indicate that coexpressed cyt bc(1) subunits were matured, assorted, and assembled in vivo into homo- and heterodimeric enzymes that can bear different mutations in each monomer. Using the system, the occurrence of intermonomer electron transfer between the low-potential b hemes of cyt bc(1) was probed by choosing mutations that perturb electron transfer at the hydroquinone oxidation (Q(o)) and quinone reduction (Q(i)) sites of the enzyme. The data demonstrate that active heterodimeric variants, formed of monomers carrying mutations that abolish only one of the two (Q(o) or Q(i)) active sites of each monomer, are produced, and they support photosynthetic growth of R. capsulatus. Detailed analyses of the physicochemical properties of membranes of these mutants, as well as purified homo- and heterodimeric cyt bc(1) preparations, demonstrated that efficient and productive electron transfer occurs between the low-potential b(L) hemes of the monomers in a heterodimeric enzyme. Overall findings are discussed with respect to intra- and intermonomer interactions that take place during the catalytic turnover of cyt bc(1).


Subject(s)
Electron Transport Complex III/chemistry , Heme/chemistry , Rhodobacter capsulatus/chemistry , Electron Transport , Electron Transport Complex III/genetics , Electron Transport Complex III/metabolism , Heme/metabolism , Kinetics , Models, Molecular , Oxidation-Reduction , Protein Multimerization , Protein Structure, Quaternary , Rhodobacter capsulatus/genetics , Rhodobacter capsulatus/metabolism
9.
Biochim Biophys Acta ; 1808(1): 65-77, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20797386

ABSTRACT

The sodium/iodide symporter is an intrinsic membrane protein that actively transports iodide into thyroid follicular cells. It is a key element in thyroid hormone biosynthesis and in the radiotherapy of thyroid tumours and their metastases. Sodium/iodide symporter is a very hydrophobic protein that belongs to the family of sodium/solute symporters. As for many other membrane proteins, particularly mammalian ones, little is known about its biochemistry and structure. It is predicted to contain 13 transmembrane helices, with an N-terminus oriented extracellularly. The C-terminal, cytosolic domain contains approximately one hundred amino acid residues and bears most of the transporter's putative regulatory sites (phosphorylation, sumoylation, di-acide, di-leucine or PDZ-binding motifs). In this study, we report the establishment of eukaryotic cell lines stably expressing various human sodium/iodide symporter recombinant proteins, and the development of a purification protocol which allowed us to purify milligram quantities of the human transporter. The quaternary structure of membrane transporters is considered to be essential for their function and regulation. Here, the oligomeric state of human sodium/iodide symporter was analysed for the first time using purified protein, by size exclusion chromatography and light scattering spectroscopy, revealing that the protein exists mainly as a dimer which is stabilised by a disulfide bridge. In addition, the existence of a sodium/iodide symporter C-terminal fragment interacting with the protein was also highlighted. We have shown that this fragment exists in various species and cell types, and demonstrated that it contains the amino-acids [512-643] from the human sodium/iodide symporter protein and, therefore, the last predicted transmembrane helix. Expression of either the [1-512] truncated domain or the [512-643] domain alone, as well as co-expression of the two fragments, was performed, and revealed that co-expression of [1-512] with [512-643] allowed the reconstitution of a functional protein. These findings constitute an important step towards an understanding of some of the post-translational mechanisms that finely tune iodide accumulation through human sodium/iodide symporter regulation.


Subject(s)
Symporters/chemistry , Amino Acids/chemistry , Biochemistry/methods , Biotinylation , Cell Membrane/metabolism , Dimerization , Disulfides/chemistry , HEK293 Cells , Humans , Microscopy, Fluorescence/methods , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Sodium Iodide/chemistry , Thyroid Gland/metabolism
10.
J Biol Chem ; 286(1): 259-69, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-20978121

ABSTRACT

Thyroglobulin (Tg) is secreted by thyroid epithelial cells. It is essential for thyroid hormonogenesis and iodine storage. Although studied for many years, only indirect and partial surveys of its post-translational modifications were reported. Here, we present a direct proteomic approach, used to study the degree of iodination of mouse Tg without any preliminary purification. A comprehensive coverage of Tg was obtained using a combination of different proteases, MS/MS fragmentation procedures with inclusion lists and a hybrid mass high-resolution LTQ-Orbitrap XL mass spectrometer. Although only 16 iodinated sites are currently known for human Tg, we uncovered 37 iodinated tyrosine residues, most of them being mono- or diiodinated. We report the specific isotopic pattern of thyroxine modification, not recognized as a normal peptide pattern. Four hormonogenic sites were detected. Two donor sites were identified through the detection of a pyruvic acid residue in place of the initial tyrosine. Evidence for polypeptide cleavages sites due to the action of cathepsins and dipeptidyl proteases in the thyroid were also detected. This work shows that semi-quantitation of Tg iodination states is feasible for human biopsies and should be of significant medical interest for further characterization of human thyroid pathologies.


Subject(s)
Halogenation , Proteomics/methods , Thyroglobulin/chemistry , Thyroglobulin/metabolism , Thyroid Gland/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cathepsins/analysis , Hormones/biosynthesis , Mice , Molecular Sequence Data , Protein Processing, Post-Translational , Tandem Mass Spectrometry , Tissue Extracts
11.
PLoS One ; 6(12): e29191, 2011.
Article in English | MEDLINE | ID: mdl-22216205

ABSTRACT

BACKGROUND: Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. METHODOLOGY/PRINCIPAL FINDINGS: The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. CONCLUSIONS/SIGNIFICANCE: Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein.


Subject(s)
Membrane Proteins/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Blotting, Western , Cell Line , Cloning, Molecular , DNA Primers , Membrane Proteins/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Polymerase Chain Reaction , Spodoptera
12.
J Endocrinol ; 197(1): 95-109, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18372236

ABSTRACT

The active transport of iodide from the bloodstream into thyroid follicular cells is mediated by the Na+/I- symporter (NIS). We studied mouse NIS (mNIS) and found that it catalyzes iodide transport into transfected cells more efficiently than human NIS (hNIS). To further characterize this difference, we compared (125)I uptake in the transiently transfected human embryonic kidney (HEK) 293 cells. We found that the V(max) for mNIS was four times higher than that for hNIS, and that the iodide transport constant (K(m)) was 2.5-fold lower for hNIS than mNIS. We also performed immunocytolocalization studies and observed that the subcellular distribution of the two orthologs differed. While the mouse protein was predominantly found at the plasma membrane, its human ortholog was intracellular in approximately 40% of the expressing cells. Using cell surface protein-labeling assays, we found that the plasma membrane localization frequency of the mouse protein was only 2.5-fold higher than that of the human protein, and therefore cannot alone account for the difference in the obtained V(max) values. We reasoned that the observed difference could also be caused by a higher turnover number for iodide transport in the mouse protein. We then expressed and analyzed chimeric proteins. The data obtained with these constructs suggest that the iodide recognition site could be located in the region extending from the N-terminus to transmembrane domain 8, and that the region between transmembrane domain 5 and the C-terminus could play a role in the subcellular localization of the protein.


Subject(s)
Symporters/physiology , Animals , Annexin A5/analysis , Cell Membrane/chemistry , Cells, Cultured , Humans , Immunohistochemistry , Iodides/metabolism , Kinetics , Mice , Recombinant Fusion Proteins/biosynthesis , Sex Characteristics , Sodium/metabolism , Species Specificity , Symporters/analysis , Symporters/chemistry
13.
Proteomics ; 5(17): 4568-80, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16240288

ABSTRACT

The industrial use of uranium and particularly of depleted uranium, has pinpointed the need to review its chemical impact on human health. A proteomic approach was used to evaluate the response of a human lung cell line (A549) to uranium. We established the first 2-D reference map of the A549 cell line, identifying 87 spots corresponding to 81 major proteins. Uranium treatment triggered differential expression of 18 spots, of which 14 corresponded to fragments of cytokeratin 8 (CK8) and cytokeratin (CK18) and 1 to peroxiredoxin 1. We probed several hypotheses regarding CK cleavage, and observed that it did not result from caspase or calpain activity. Furthermore, we showed that the fragments are recognised by an anti-ubiquitin antibody (KM691). These results suggest a regulatory pathway involving CK ubiquitinylation or dysfunction in the proteasome-ubiquitin system in response to uranium exposure in human lung cells.


Subject(s)
Enzymes/analysis , Lung/radiation effects , Proteins/analysis , Uranium/pharmacology , Amino Acid Sequence , Cell Line , Cell Survival/radiation effects , Databases, Protein , Electrophoresis, Gel, Two-Dimensional/methods , Humans , Keratins/analysis , Keratins/chemistry , Lung/cytology , Lung/metabolism , Molecular Sequence Data , Proteomics/methods , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , Respiratory Mucosa/radiation effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
14.
J Biol Chem ; 280(29): 27458-65, 2005 Jul 22.
Article in English | MEDLINE | ID: mdl-15917236

ABSTRACT

Atovaquone is an antiparasitic drug that selectively inhibits electron transport through the parasite mitochondrial cytochrome bc1 complex and collapses the mitochondrial membrane potential at concentrations far lower than those at which the mammalian system is affected. Because this molecule represents a new class of antimicrobial agents, we seek a deeper understanding of its mode of action. To that end, we employed site-directed mutagenesis of a bacterial cytochrome b, combined with biophysical and biochemical measurements. A large scale domain movement involving the iron-sulfur protein subunit is required for electron transfer from cytochrome b-bound ubihydroquinone to cytochrome c1 of the cytochrome bc1 complex. Here, we show that atovaquone blocks this domain movement by locking the iron-sulfur subunit in its cytochrome b-binding conformation. Based on our malaria atovaquone resistance data, a series of cytochrome b mutants was produced that were predicted to have either enhanced or reduced sensitivity to atovaquone. Mutations altering the bacterial cytochrome b at its ef loop to more closely resemble Plasmodium cytochrome b increased the sensitivity of the cytochrome bc1 complex to atovaquone. A mutation within the ef loop that is associated with resistant malaria parasites rendered the complex resistant to atovaquone, thereby providing direct proof that the mutation causes atovaquone resistance. This mutation resulted in a 10-fold reduction in the in vitro activity of the cytochrome bc1 complex, suggesting that it may exert a cost on efficiency of the cytochrome bc1 complex.


Subject(s)
Antimalarials/pharmacology , Bacterial Proteins/drug effects , Naphthoquinones/pharmacology , Atovaquone , Cytochromes b/drug effects , Cytochromes b/genetics , Cytochromes c/metabolism , Dose-Response Relationship, Drug , Drug Resistance/genetics , Electron Transport/drug effects , Electron Transport Complex III/metabolism , Models, Biological , Mutagenesis, Site-Directed , Mutation , Oxidation-Reduction
15.
Photosynth Res ; 79(1): 25-44, 2004.
Article in English | MEDLINE | ID: mdl-16228398

ABSTRACT

The ubihydroquinone:cytochrome c oxidoreductase (also called complex III, or bc (1) complex), is a multi subunit enzyme encountered in a very broad variety of organisms including uni- and multi-cellular eukaryotes, plants (in their mitochondria) and bacteria. Most bacteria and mitochondria harbor various forms of the bc (1) complex, while plant and algal chloroplasts as well as cyanobacteria contain a homologous protein complex called plastohydroquinone:plastocyanin oxidoreductase or b (6) f complex. Together, these enzyme complexes constitute the superfamily of the bc complexes. Depending on the physiology of the organisms, they often play critical roles in respiratory and photosynthetic electron transfer events, and always contribute to the generation of the proton motive force subsequently used by the ATP synthase. Primarily, this review is focused on comparing the 'mitochondrial-type' bc (1) complex and the 'chloroplast-type' b (6) f complex both in terms of structure and function. Specifically, subunit composition, cofactor content and assembly, inhibitor sensitivity, proton pumping, concerted electron transfer and Fe-S subunit large-scale domain movement of these complexes are discussed. This is a timely undertaking in light of the structural information that is emerging for the b (6) f complex.

16.
Biochemistry ; 42(6): 1499-507, 2003 Feb 18.
Article in English | MEDLINE | ID: mdl-12578362

ABSTRACT

The ubihydroquinone:cytochrome (cyt) c oxidoreductase, or bc(1) complex, and its homologue the b(6)f complex are key components of respiratory and photosynthetic electron transport chains as they contribute to the generation of an electrochemical gradient used by the ATP synthase to produce ATP. The bc(1) complex has two catalytic domains, ubihydroquinone oxidation (Q(o)) and ubiquinone reduction (Q(i)) sites, that are located on each side of the membrane. The key to the energetic efficiency of this enzyme relies upon the occurrence of a unique electron bifurcation reaction at its Q(o) site. Recently, several lines of evidence have converged to establish that in the bc(1) complex the extrinsic domain of the Fe-S subunit that contains a [2Fe2S] metal cluster moves during catalysis to shuttle electrons between the Q(o) site and c(1) heme. While this step is required for electron bifurcation, available data also suggest that the movement might be controlled to ensure maximal energetic efficiency [Darrouzet et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 4567-4572]. To gain insight into the plausible control mechanism, we used a biochemical genetic approach to define the different regions of the bc(1) complex that might interact with each other. Previously, we found that a mutation located at position L286 of the ef loop of Rhodobacter capsulatus cyt b could alleviate movement impairment resulting from a mutation in the hinge region, linking the [2Fe2S] cluster domain to the membrane anchor of the Fe-S subunit. Here we report that various substitutions at position 288 on the opposite side of the ef loop also impair Q(o) site catalysis. In particular, we note that while most of the substitutions affect only QH(2) oxidation, yet others like T288S also hinder the rate of the movement of the Fe-S subunit. Thus, position 288 of cyt b appears to be important for both the QH(2) oxidation and the movement of the Fe-S subunit. Moreover, we found that, upon substitution of T288 by other amino acids, additional compensatory mutations located at the [2Fe2S] cluster or the hinge domains of the Fe-S subunit, or on the cd loop of cyt b, arise readily to alleviate these defects. These studies indicate that intimate protein-protein interactions occur between cyt b and the Fe-S subunits to sustain fast movement and efficient QH(2) oxidation and highlight the critical dual role the ef loop of cyt b to fine-tune the docking and movement of the Fe-S subunit during Q(o) site catalysis.


Subject(s)
Cytochrome b Group/chemistry , Electron Transport Complex III/chemistry , Iron-Sulfur Proteins/chemistry , Protein Subunits/chemistry , Ubiquinone/chemistry , Amino Acid Substitution/genetics , Catalysis , Cytochrome b Group/genetics , Electron Transport/genetics , Electron Transport Complex III/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Iron-Sulfur Proteins/genetics , Mutagenesis, Site-Directed , Oxidation-Reduction , Protein Structure, Tertiary/genetics , Protein Subunits/genetics , Rhodobacter capsulatus/enzymology , Rhodobacter capsulatus/genetics , Serine/genetics , Threonine/genetics , Ubiquinone/genetics
17.
Biochim Biophys Acta ; 1556(2-3): 175-86, 2002 Dec 02.
Article in English | MEDLINE | ID: mdl-12460675

ABSTRACT

Two variants of the cytochrome c1 component of the Rhodobacter capsulatus cytochrome bc1 complex, in which Met183 (an axial heme ligand) was replaced by lysine (M183K) or histidine (M183H), have been analyzed. Electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectra of the intact complex indicate that the histidine/methionine heme ligation of the wild-type cytochrome is replaced by histidine/lysine ligation in M183K and histidine/histidine ligation in M183H. Variable amounts of histidine/histidine axial heme ligation were also detected in purified wild-type cytochrome c1 and its M183K variant, suggesting that a histidine outside the CSACH heme-binding domain can be recruited as an alternative ligand. Oxidation-reduction titrations of the heme in purified cytochrome c1 revealed multiple redox forms. Titrations of the purified cytochrome carried out in the oxidative or reductive direction differ. In contrast, titrations of cytochrome c1 in the intact bc1 complex and in a subcomplex missing the Rieske iron-sulfur protein were fully reversible. An Em7 value of -330 mV was measured for the single disulfide bond in cytochrome c1. The origins of heme redox heterogeneity, and of the differences between reductive and oxidative heme titrations, are discussed in terms of conformational changes and the role of the disulfide in maintaining the native structure of cytochrome c1.


Subject(s)
Bacterial Proteins/chemistry , Cytochromes c1/chemistry , Rhodobacter capsulatus/chemistry , Amino Acid Substitution , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Circular Dichroism , Cytochromes c1/genetics , Cytochromes c1/metabolism , Disulfides/chemistry , Electron Spin Resonance Spectroscopy , Histidine/chemistry , Lysine/chemistry , Multienzyme Complexes , Oxidation-Reduction , Rhodobacter capsulatus/genetics , Rhodobacter capsulatus/metabolism
18.
J Biol Chem ; 277(5): 3464-70, 2002 Feb 01.
Article in English | MEDLINE | ID: mdl-11707448

ABSTRACT

Recent crystallographic and kinetic data have revealed the crucial role of the large scale domain movement of the iron-sulfur subunit [2Fe-2S] cluster domain during the ubihydroquinone oxidation reaction catalyzed by the cytochrome bc(1) complex. Previously, the electron paramagnetic resonance signature of the [2Fe-2S] cluster and its redox midpoint potential (E(m)) value have been used extensively to characterize the interactions of the [2Fe-2S] cluster with the occupants of the ubihydroquinone oxidation (Q(o)) catalytic site. In this work we analyze these interactions in various iron-sulfur subunit mutants that carry mutations in its flexible hinge region. We show that the E(m) increases of the iron-sulfur subunit [2Fe-2S] cluster induced either by these mutations or by the addition of stigmatellin do not act synergistically. Moreover, the E(m) increases disappear in the presence of class I inhibitors like myxothiazol. Because various inhibitors are known to affect the location of the iron-sulfur subunit cluster domain, the measured E(m) value of the [2Fe-2S] cluster therefore reflects its equilibrium position in the Q(o) site. We also demonstrate the existence in this site of a location where the E(m) of the cluster is increased by about 150 mV and discuss its possible implications in term of Q(o) site catalysis and energetics.


Subject(s)
Electron Transport Complex III/chemistry , Electron Transport Complex III/metabolism , Iron-Sulfur Proteins/chemistry , Binding Sites , Electron Spin Resonance Spectroscopy , Electron Transport Complex III/genetics , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Kinetics , Models, Molecular , Mutation , Oxidation-Reduction , Potentiometry , Protein Conformation , Protein Subunits , Rhodobacter capsulatus/metabolism
19.
J Biol Chem ; 277(5): 3471-6, 2002 Feb 01.
Article in English | MEDLINE | ID: mdl-11707449

ABSTRACT

Recent kinetics experiments using mutants of the bc(1) complex (ubihydroquinone-cytochrome c oxidoreductase) iron-sulfur subunit with modified hinge regions have revealed the crucial role played by the large scale movement of its [2Fe-2S] cluster domain during the activity of this enzyme. In particular, one of these mutants (+1Ala) with an insertion of one alanine residue in the hinge region is partially deficient in performing this movement. We found that this defect can be overcome by the appearance of a second mutation substituting the leucine at position 286 in the ef loop of cytochrome b with a phenylalanine. Detailed studies of these mutants and their derivatives revealed that the ef loop acts as a barrier that needs to be crossed for multiple turnovers of the enzyme but not for a single turnover ubihydroquinone oxidation site catalysis. These findings indicate that the movement of the iron-sulfur subunit is composed of two discrete parts: a "micro-movement" at the cytochrome b interface, during which the [2Fe-2S] cluster interacts with ubihydroquinone oxidation site occupants and catalyzes ubihydroquinone oxidation, and a "macro-movement," during which the cluster domain swings away from cytochrome b interface, crosses the ef loop, and reaches a position close to cytochrome c(1) heme, to which it ultimately transfers an electron.


Subject(s)
Cytochrome b Group/metabolism , Electron Transport Complex III/chemistry , Electron Transport Complex III/metabolism , Iron-Sulfur Proteins/chemistry , Alanine , Binding Sites , Catalysis , Cytochrome b Group/chemistry , Cytochrome b Group/genetics , Cytochrome c Group/metabolism , Darkness , Electron Transport Complex III/genetics , Kinetics , Models, Molecular , Mutagenesis, Insertional , Oxidation-Reduction , Phenylalanine , Potentiometry , Protein Conformation , Protein Subunits , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Rhodobacter capsulatus/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...