Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Gene ; 930: 148860, 2024 Dec 20.
Article in English | MEDLINE | ID: mdl-39151675

ABSTRACT

Since ectoine is a high-value product, overviewing strategies for identifying novel microbial sources becomes relevant. In the current study, by following a genome mining approach, the ectoine biosynthetic cluster in a tropical marine strain of Nocardiopsis dassonvillei (NCIM 5124) was located and compared with related organisms. Transcriptome analysis of Control and Test samples (with 0 and 5% NaCl, respectively) was carried out to understand salt induced stress response at the molecular level. There were 4950 differentially expressed genes with 25 transcripts being significantly upregulated in Test samples. NaCl induced upregulation of the ectoine biosynthesis cluster and some other genes (stress response, chaperone/Clp protease, cytoplasm, ribonucleoprotein and protein biosynthesis). The production of ectoine as a stress response molecule was experimentally validated via LCMS analysis. The investigation sheds light on the responses exhibited by this actinomycete in coping up with salt stress and provides a foundation for understanding salt induced molecular interactions.


Subject(s)
Amino Acids, Diamino , Transcriptome , Amino Acids, Diamino/metabolism , Amino Acids, Diamino/biosynthesis , Actinobacteria/genetics , Actinobacteria/metabolism , Gene Expression Profiling/methods , Genomics/methods , Genome, Bacterial , Gene Expression Regulation, Bacterial/drug effects , Multigene Family , Salt Stress/genetics , Sodium Chloride/pharmacology
2.
Gene ; 883: 147674, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37516285

ABSTRACT

Nothapodytes nimmoniana belongs to family Icacinaceae and is a major source of compound Camptothecin. The global demand for Camptothecin has caused large-scale exploitation of N. nimmoniana from its wild habitat in Western Ghats of India, thereby making it vulnerable. The species is known to exhibit genetic diversity among the populations in Western Ghats. In this study, we report plastome sequence of N. nimmoniana, first for the genus. For the study, the species was collected from Western Ghats of Maharashtra. The plastome of N. nimmoniana was 150,726 bp in length and exhibited typical quadripartite structure with 83,771 bp LSC, 18,513 bp SSC and 24,221 IR region. The plastome was characterized by presence of 124 unique genes, 87 protein coding genes, 29 tRNA genes and four rRNA genes. Further, the plastome was compared with the available basal lamiid plastomes for gene order and composition. N. nimmoniana plastome exhibited SSC region in an inverted configuration. Phylogenomic study placed N. nimmoniana sister to Mappia mexicana. The SSR markers identified in this study, might help to distinguish genetically diverse populations, prioritizing the populations which need immediate conservation effects as well as for checking adulteration.


Subject(s)
Camptothecin , Genome, Chloroplast , India , Phylogeny
3.
Gene ; 861: 147238, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36736502

ABSTRACT

Loranthaceae is the largest family of the order Santalales and includes root and stem hemiparasites. The parasites are known to exhibit reductions in the genomic features as well as relaxed or intensified selection shifts. In this study, we report plastome and mitogenome sequence of Helicanthes elastica (subtribe Amyeminae, tribe Lorantheae), an endemic, monotypic genus of Western Ghats, India growing on remarkably diverse host range. The length of plastome sequence was 1,28,805 bp while that of mitogenome was 1,65,273 bp. This is the smallest mitogenome from Loranthaceae reported till date. The plastome of Helicanthes exhibited loss of ndh genes (ψndhB), ψinfA, rps15, rps16, rpl32, trnK-UUU, trnG-UCC, trnV-UAC and trnA-UGC while mitogenome exhibited pseudogenized cox2, nad1 and nad4 genes. The comparative study of Loranthaceae plastomes revealed that the pseudogenization or loss of genes was not specific to any genus or tribe and variation was noted in the number of introns of clpP gene in the family. Several photosynthetic genes have undergone relaxed selection supporting lower photosynthetic rates in parasitic plants while some respiratory genes exhibited intensified selection supporting the idea of host-parasite arm race in Loranthaceae. The plastome gene content was found conserved in root hemiparasites compared to stem hemiparasites. The atp1 gene of mitogenome was chimeric and part of it exhibited similarities with Lamiales members. The phylogenetic analysis based on plastid genes placed Helicanthes sister to the members of subtribe Dendrophthoinae.


Subject(s)
Genome, Mitochondrial , Loranthaceae , Phylogeny , Rubber , Evolution, Molecular
4.
Planta ; 256(6): 102, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36282353

ABSTRACT

MAIN CONCLUSION: Novel cytochrome P450s, CYP81B140 and CYP81B141 from Plumbago zeylanica were functionally characterized to understand their involvement in polyketide plumbagin biosynthesis. Further, we propose 3-methyl-1-8-naphthalenediol and isoshinanolone as intermediates for plumbagin biosynthesis. Plumbago zeylanica L. (P. zeylanica) is a medicinally important plant belonging to the family Plumbaginaceae. It comprises the most abundant naphthoquinone plumbagin having anti-cancer activity. Only the polyketide synthase (PKS) enzyme has been identified from the biosynthetic pathway which catalyzes iterative condensation of acetyl-CoA and malonyl-CoA molecules. The plumbagin biosynthesis involves hydroxylation, oxidation, hydration and dehydration of intermediate compounds which are expected to be catalyzed by cytochrome P450s (CYPs). To identify the CYPs, co-expression analysis was carried out using PKS as a candidate gene. Out of the eight identified CYPs, CYP81B140 and CYP81B141 have similar expression with PKS and belong to the CYP81 family. Phylogenetic analysis suggested that CYP81B140 and CYP81B141 cluster with CYPs from CYP81B, CYP81D, CYP81E and CYP81AA subfamilies which are known to be involved in the hydroxylation and oxidation reactions. Moreover, artificial microRNA-mediated transient individual silencing and co-silencing of CYP81B140 and CYP81B141 significantly reduced plumbagin and increased the 3-methyl-1-8-naphthalenediol and isoshinanolone content. Based on metabolite analysis, we proposed that 3-methyl-1-8-naphthalenediol and isoshinanolone function as intermediates for plumbagin biosynthesis. Transient silencing, over-expression and docking analysis revealed that CYP81B140 is involved in C-1 oxidation, C-4 hydroxylation and [C2-C3] hydration of 3-methyl-1-8-naphthalenediol to form isoshinanolone, whereas CYP81B141 is catalyzing [C2-C3] dehydration and C-4 oxidation of isoshinanolone to form plumbagin. Our results indicated that both CYP81B140 and CYP81B141 are promiscuous and necessary for plumbagin biosynthesis. This is the first report of identification and functional characterization of P. zeylanica-specific CYPs involved in plumbagin biosynthetic pathway and in general hexaketide synthesis in plants.


Subject(s)
MicroRNAs , Naphthoquinones , Plumbaginaceae , Polyketides , Plumbaginaceae/genetics , Plumbaginaceae/metabolism , Polyketide Synthases/genetics , Phylogeny , Acetyl Coenzyme A , Dehydration , Plant Roots/metabolism , Naphthoquinones/metabolism , Genomics , Cytochromes
5.
PhytoKeys ; 175: 89-107, 2021.
Article in English | MEDLINE | ID: mdl-33867801

ABSTRACT

The genus Limonium, commonly known as Sea Lavenders, is one of the most species-rich genera of the family Plumbaginaceae. In this study, two new plastomes for the genus Limonium, viz. L. tetragonum and L. bicolor, were sequenced and compared to available Limonium plastomes, viz. L. aureum and L. tenellum, to understand the gene content and structural variations within the family. The loss of the rpl16 intron and pseudogenisation of rpl23 was observed. This study reports, for the first time, expansion of the IRs to include the ycf1 gene in Limonium plastomes, incongruent with previous studies. Two positively selected genes, viz. ndhF and ycf2, were identified. Furthermore, putative barcodes are proposed for the genus, based on the nucleotide diversity of four Limonium plastomes.

6.
Saudi J Biol Sci ; 27(12): 3489-3498, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304160

ABSTRACT

In spite of availability of several plastomes representing different tribes of Plantaginaceae, sparse attempts have been made to understand the plastome structure, evolution, and phylogenomics. In the present study, we have made an effort to understand the gene content and plastome evolution in the family Plantaginaceae using the newly generated plastome sequence of Veronica ovata subsp. kiusiana, a taxon native to SE Asia. In the first-ever attempt, plastomes of seven out of 10 tribes of Plantaginaceae have been compared to understand the evolution across the tribes of Plantaginaceae. The size of the plastome of V. ovata subsp. kiusiana is 152,249 bp, showing a typical quadripartite structure containing LSC, SSC, and two IRs with the sizes of 83,187, 17,704, and 25,679 respectively. The plastome comparison revealed the unique deletions in ycf2 and ndhF genes of members of different tribes, and also revealed high nucleotide variable hotspots. The study also revealed six highly variable genes and intergenic spacer viz. rps16, rps15-ycf1, ccsA-ndhD, ndhC-trnV, petN-psbM, and ycf1-trnN as potential DNA barcodes for the genus Veronica. The phylogenomic study revealed the sister relationship between V. ovata subsp. kiusiana and V. persica and also suggested the tentative placement of seven tribes in the family Plantaginaceae.

7.
PLoS One ; 14(8): e0221423, 2019.
Article in English | MEDLINE | ID: mdl-31430346

ABSTRACT

In this study, we report the plastome of Eriocaulon decemflorum (Eriocaulaceae) and make an effort to understand the genome evolution, structural rearrangements and gene content of the order Poales by comparing it with other available plastomes. The size of complete E. decemflorum plastome is 151,671 bp with an LSC (81,477bp), SSC (17,180bp) and a pair of IRs (26,507 bp). The plastome exhibits GC content of 35.8% and 134 protein-coding genes with 19 genes duplicated in the IR region. The Eriocaulaceae plastome is characterized by the presence of accD, ycf1 and ycf2 genes and presence of introns in clpP and rpoC1 genes which have been lost in the Graminid plastomes. Phylogenomic analysis based on 81 protein-coding genes placed Eriocaulaceae sister to Mayacaceae. The present study enhances our understanding of the evolution of Poales by analyzing the plastome data from the order.


Subject(s)
Eriocaulaceae/genetics , Genome, Plastid , Phylogeny , Genes, Plant/genetics , Plant Proteins/genetics , Plastids/genetics
8.
J Ethnopharmacol ; 231: 283-294, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30412749

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The ethnobotanical survey was carried out in the Bac Huong Hoa Nature Reserve (BHHNR), Vietnam. The Van Kieu ethnic group, the inhabitant of Nature Reserve, is rich in knowledge about the medicinal plants found in the Nature Reserve. However, their knowledge is less documented. AIM OF THE STUDY: The present study was conducted to document the use of medicinal plants, plant parts used, mode of preparation and delivery by the ethnic group of Van Kieu. The study also aimed at comparing the information generated by this study with the previously published Dictionary of Vietnam Medicinal plants (DVM). MATERIALS AND METHODS: The information was collected through semi-structured and unstructured interviews. The interviews were conducted from April 2016 to March 2017. The number of informants involved in the survey was 93 belonging to age group of 20-81. Species Use-Reports (UR) were analyzed to determine the plant importance in the local and the Informant Consensus Factor (FIC). Local plant uses were listed and compared with the previously published data from Vietnam. RESULTS: Comprehensively 355 Use-Reports were documented in this study. A total of 111 medicinal plant species belonging to 102 genera and 46 families were reported. Out of 46 families, Euphorbiaceae (10 species), Compositae and Leguminosae (9 species each), Apocynaceae (7 species), Rutaceae and Rubiaceae (5 species each) were the dominant families. Leaves were the most frequently used plant part (43.1%) in the preparation of medicines. The most frequent preparation method was decoction (49%) while the oral route of administration (51%) was the most commonly mentioned mode of administration. Artocarpus heterophyllus Lam., Chromolaena odorata (L.) R.M.King & H.Rob., Blumea balsamifera (L.) DC., Psidium guajava L. and Catunaregam spinosa (Thunb.) Tirveng. were shown to be the most useful plants as indicated by their relatively high UR. Eight medicinal plants (7.21%) used by Van Kieu ethnic people have not been previously reported in DVM. CONCLUSION: The Van Kieu ethnic group holds valuable knowledge about uses of medicinal plant resources which is inherited through generations however this knowledge was not documented. The study highlights the need for documenting and publicizing the traditional medicinal knowledge which will provide basic data for further research and conservation.


Subject(s)
Magnoliopsida , Medicine, Traditional , Plants, Medicinal , Adult , Aged , Aged, 80 and over , Ethnicity , Ethnobotany , Female , Humans , Male , Middle Aged , Phytotherapy , Surveys and Questionnaires , Vietnam , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL