Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 68(1): e0071723, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38018963

ABSTRACT

The Mycobacterium abscessus drug development pipeline is poorly populated, with particularly few validated target-lead couples to initiate de novo drug discovery. Trimethoprim, an inhibitor of dihydrofolate reductase (DHFR) used for the treatment of a range of bacterial infections, is not active against M. abscessus. Thus, evidence that M. abscessus DHFR is vulnerable to pharmacological intervention with a small molecule inhibitor is lacking. Here, we show that the pyrrolo-quinazoline PQD-1, previously identified as a DHFR inhibitor active against Mycobacterium tuberculosis, exerts whole cell activity against M. abscessus. Enzyme inhibition studies showed that PQD-1, in contrast to trimethoprim, is a potent inhibitor of M. abscessus DHFR and over-expression of DHFR causes resistance to PQD-1, providing biochemical and genetic evidence that DHFR is a vulnerable target and mediates PQD-1's growth inhibitory activity in M. abscessus. As observed in M. tuberculosis, PQD-1 resistant mutations mapped to the folate pathway enzyme thymidylate synthase (TYMS) ThyA. Like trimethoprim in other bacteria, PQD-1 synergizes with the dihydropteroate synthase (DHPS) inhibitor sulfamethoxazole (SMX), offering an opportunity to exploit the successful dual inhibition of the folate pathway and develop similarly potent combinations against M. abscessus. PQD-1 is active against subspecies of M. abscessus and a panel of clinical isolates, providing epidemiological validation of the target-lead couple. Leveraging a series of PQD-1 analogs, we have demonstrated a dynamic structure-activity relationship (SAR). Collectively, the results identify M. abscessus DHFR as an attractive target and PQD-1 as a chemical starting point for the discovery of novel drugs and drug combinations that target the folate pathway in M. abscessus.


Subject(s)
Folic Acid Antagonists , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium tuberculosis , Humans , Mycobacterium abscessus/genetics , Mycobacterium abscessus/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Folic Acid Antagonists/pharmacology , Trimethoprim/pharmacology , Mycobacterium tuberculosis/metabolism , Enzyme Inhibitors/pharmacology , Folic Acid , Mycobacterium Infections, Nontuberculous/drug therapy
2.
mBio ; 14(2): e0059823, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37017524

ABSTRACT

Caseous necrosis is a hallmark of tuberculosis (TB) pathology and creates a niche for drug-tolerant persisters within the host. Cavitary TB and high bacterial burden in caseum require longer treatment duration. An in vitro model that recapitulates the major features of Mycobacterium tuberculosis (Mtb) in caseum would accelerate the identification of compounds with treatment-shortening potential. We have developed a caseum surrogate model consisting of lysed and denatured foamy macrophages. Upon inoculation of Mtb from replicating cultures, the pathogen adapts to the lipid-rich matrix and gradually adopts a nonreplicating state. We determined that the lipid composition of ex vivo caseum and the surrogate matrix are similar. We also observed that Mtb in caseum surrogate accumulates intracellular lipophilic inclusions (ILI), a distinctive characteristic of quiescent and drug-tolerant Mtb. Expression profiling of a representative gene subset revealed common signatures between the models. Comparison of Mtb drug susceptibility in caseum and caseum surrogate revealed that both populations are similarly tolerant to a panel of TB drugs. By screening drug candidates in the surrogate model, we determined that the bedaquiline analogs TBAJ876 and TBAJ587, currently in clinical development, exhibit superior bactericidal against caseum-resident Mtb, both alone and as substitutions for bedaquiline in the bedaquiline-pretomanid-linezolid regimen approved for the treatment of multidrug-resistant TB. In summary, we have developed a physiologically relevant nonreplicating persistence model that reflects the distinct metabolic and drug-tolerant state of Mtb in caseum. IMPORTANCE M. tuberculosis (Mtb) within the caseous core of necrotic granulomas and cavities is extremely drug tolerant and presents a significant hurdle to treatment success and relapse prevention. Many in vitro models of nonreplicating persistence have been developed to characterize the physiologic and metabolic adaptations of Mtb and identify compounds active against this treatment-recalcitrant population. However, there is little consensus on their relevance to in vivo infection. Using lipid-laden macrophage lysates, we have designed and validated a surrogate matrix that closely mimics caseum and in which Mtb develops a phenotype similar to that of nonreplicating bacilli in vivo. The assay is well suited to screen for bactericidal compounds against caseum-resident Mtb in a medium-throughput format, allowing for reduced reliance on resource intensive animal models that present large necrotic lesions and cavities. Importantly, this approach will aid the identification of vulnerable targets in caseum Mtb and can accelerate the development of novel TB drugs with treatment-shortening potential.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Animals , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis/drug therapy , Tuberculosis/microbiology , Lipids
3.
Nat Microbiol ; 7(6): 766-779, 2022 06.
Article in English | MEDLINE | ID: mdl-35637331

ABSTRACT

Mycobacterium tuberculosis (Mtb) infection is notoriously difficult to treat. Treatment efficacy is limited by Mtb's intrinsic drug resistance, as well as its ability to evolve acquired resistance to all antituberculars in clinical use. A deeper understanding of the bacterial pathways that influence drug efficacy could facilitate the development of more effective therapies, identify new mechanisms of acquired resistance, and reveal overlooked therapeutic opportunities. Here we developed a CRISPR interference chemical-genetics platform to titrate the expression of Mtb genes and quantify bacterial fitness in the presence of different drugs. We discovered diverse mechanisms of intrinsic drug resistance, unveiling hundreds of potential targets for synergistic drug combinations. Combining chemical genetics with comparative genomics of Mtb clinical isolates, we further identified several previously unknown mechanisms of acquired drug resistance, one of which is associated with a multidrug-resistant tuberculosis outbreak in South America. Lastly, we found that the intrinsic resistance factor whiB7 was inactivated in an entire Mtb sublineage endemic to Southeast Asia, presenting an opportunity to potentially repurpose the macrolide antibiotic clarithromycin to treat tuberculosis. This chemical-genetic map provides a rich resource to understand drug efficacy in Mtb and guide future tuberculosis drug development and treatment.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacology , Genomics , Humans , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/genetics
4.
Nat Rev Microbiol ; 20(11): 685-701, 2022 11.
Article in English | MEDLINE | ID: mdl-35478222

ABSTRACT

Despite two decades of intensified research to understand and cure tuberculosis disease, biological uncertainties remain and hamper progress. However, owing to collaborative initiatives including academia, the pharmaceutical industry and non-for-profit organizations, the drug candidate pipeline is promising. This exceptional success comes with the inherent challenge of prioritizing multidrug regimens for clinical trials and revamping trial designs to accelerate regimen development and capitalize on drug discovery breakthroughs. Most wanted are markers of progression from latent infection to active pulmonary disease, markers of drug response and predictors of relapse, in vitro tools to uncover synergies that translate clinically and animal models to reliably assess the treatment shortening potential of new regimens. In this Review, we highlight the benefits and challenges of 'one-size-fits-all' regimens and treatment duration versus individualized therapy based on disease severity and host and pathogen characteristics, considering scientific and operational perspectives.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Drug Discovery , Drug Industry , Tuberculosis/drug therapy
5.
Nat Cancer ; 2(4): 414-428, 2021 04.
Article in English | MEDLINE | ID: mdl-34179825

ABSTRACT

Brain metastases are refractory to therapies that control systemic disease in patients with human epidermal growth factor receptor 2 (HER2+) breast cancer, and the brain microenvironment contributes to this therapy resistance. Nutrient availability can vary across tissues, therefore metabolic adaptations required for brain metastatic breast cancer growth may introduce liabilities that can be exploited for therapy. Here, we assessed how metabolism differs between breast tumors in brain versus extracranial sites and found that fatty acid synthesis is elevated in breast tumors growing in brain. We determine that this phenotype is an adaptation to decreased lipid availability in brain relative to other tissues, resulting in a site-specific dependency on fatty acid synthesis for breast tumors growing at this site. Genetic or pharmacological inhibition of fatty acid synthase (FASN) reduces HER2+ breast tumor growth in the brain, demonstrating that differences in nutrient availability across metastatic sites can result in targetable metabolic dependencies.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Brain Neoplasms/metabolism , Breast Neoplasms/drug therapy , Fatty Acid Synthases/genetics , Fatty Acids/therapeutic use , Female , Humans , Tumor Microenvironment
7.
Article in English | MEDLINE | ID: mdl-29203492

ABSTRACT

Tuberculosis (TB) recently became the leading infectious cause of death in adults, while attempts to shorten therapy have largely failed. Dormancy, persistence, and drug tolerance are among the factors driving the long therapy duration. Assays to measure in situ drug susceptibility of Mycobacterium tuberculosis bacteria in pulmonary lesions are needed if we are to discover new fast-acting regimens and address the global TB threat. Here we take a first step toward this goal and describe an ex vivo assay developed to measure the cidal activity of anti-TB drugs against M. tuberculosis bacilli present in cavity caseum obtained from rabbits with active TB. We show that caseum M. tuberculosis bacilli are largely nonreplicating, maintain viability over the course of the assay, and exhibit extreme tolerance to many first- and second-line TB drugs. Among the drugs tested, only the rifamycins fully sterilized caseum. A similar trend of phenotypic drug resistance was observed in the hypoxia- and starvation-induced nonreplicating models, but with notable qualitative and quantitative differences: (i) caseum M. tuberculosis exhibits higher drug tolerance than nonreplicating M. tuberculosis in the Wayne and Loebel models, and (ii) pyrazinamide is cidal in caseum but has no detectable activity in these classic nonreplicating assays. Thus, ex vivo caseum constitutes a unique tool to evaluate drug potency against slowly replicating or nonreplicating bacilli in their native caseous environment. Intracaseum cidal concentrations can now be related to the concentrations achieved in the necrotic foci of granulomas and cavities to establish correlations between clinical outcome and lesion-centered pharmacokinetics-pharmacodynamics (PK-PD) parameters.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Animals , Drug Tolerance , Pyrazinamide/pharmacology , Rabbits , Rifamycins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...