Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 79(1): 13-22, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16773561

ABSTRACT

Array-based comparative genomic hybridization (arrayCGH) is a microarray-based comparative genomic hybridization technique that has been used to compare tumor genomes with normal genomes, thus providing rapid genomic assays of tumor genomes in terms of copy-number variations of those chromosomal segments that have been gained or lost. When properly interpreted, these assays are likely to shed important light on genes and mechanisms involved in the initiation and progression of cancer. Specifically, chromosomal segments, deleted in one or both copies of the diploid genomes of a group of patients with cancer, point to locations of tumor-suppressor genes (TSGs) implicated in the cancer. In this study, we focused on automatic methods for reliable detection of such genes and their locations, and we devised an efficient statistical algorithm to map TSGs, using a novel multipoint statistical score function. The proposed algorithm estimates the location of TSGs by analyzing segmental deletions (hemi- or homozygous) in the genomes of patients with cancer and the spatial relation of the deleted segments to any specific genomic interval. The algorithm assigns, to an interval of consecutive probes, a multipoint score that parsimoniously captures the underlying biology. It also computes a P value for every putative TSG by using concepts from the theory of scan statistics. Furthermore, it can identify smaller sets of predictive probes that can be used as biomarkers for diagnosis and therapeutics. We validated our method using different simulated artificial data sets and one real data set, and we report encouraging results. We discuss how, with suitable modifications to the underlying statistical model, this algorithm can be applied generally to a wider class of problems (e.g., detection of oncogenes).


Subject(s)
Genes, Tumor Suppressor , Gene Deletion , Genome, Human , Humans , Neoplasms/genetics , Nucleic Acid Hybridization
2.
Proc Natl Acad Sci U S A ; 101(46): 16292-7, 2004 Nov 16.
Article in English | MEDLINE | ID: mdl-15534219

ABSTRACT

We have developed a versatile statistical analysis algorithm for the detection of genomic aberrations in human cancer cell lines. The algorithm analyzes genomic data obtained from a variety of array technologies, such as oligonucleotide array, bacterial artificial chromosome array, or array-based comparative genomic hybridization, that operate by hybridizing with genomic material obtained from cancer and normal cells and allow detection of regions of the genome with altered copy number. The number of probes (i.e., resolution), the amount of uncharacterized noise per probe, and the severity of chromosomal aberrations per chromosomal region may vary with the underlying technology, biological sample, and sample preparation. Constrained by these uncertainties, our algorithm aims at robustness by using a priorless maximum a posteriori estimator and at efficiency by a dynamic programming implementation. We illustrate these characteristics of our algorithm by applying it to data obtained from representational oligonucleotide microarray analysis and array-based comparative genomic hybridization technology as well as to synthetic data obtained from an artificial model whose properties can be varied computationally. The algorithm can combine data from multiple sources and thus facilitate the discovery of genes and markers important in cancer, as well as the discovery of loci important in inherited genetic disease.


Subject(s)
Algorithms , Gene Dosage , Bayes Theorem , Breast Neoplasms/genetics , Cell Line, Tumor , Chromosome Aberrations , Data Interpretation, Statistical , Female , Genome, Human , Humans , Male , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Prostatic Neoplasms/genetics
3.
OMICS ; 7(3): 253-68, 2003.
Article in English | MEDLINE | ID: mdl-14583115

ABSTRACT

We collaborate in a research program aimed at creating a rigorous framework, experimental infrastructure, and computational environment for understanding, experimenting with, manipulating, and modifying a diverse set of fundamental biological processes at multiple scales and spatio-temporal modes. The novelty of our research is based on an approach that (i) requires coevolution of experimental science and theoretical techniques and (ii) exploits a certain universality in biology guided by a parsimonious model of evolutionary mechanisms operating at the genomic level and manifesting at the proteomic, transcriptomic, phylogenic, and other higher levels. Our current program in "systems biology" endeavors to marry large-scale biological experiments with the tools to ponder and reason about large, complex, and subtle natural systems. To achieve this ambitious goal, ideas and concepts are combined from many different fields: biological experimentation, applied mathematical modeling, computational reasoning schemes, and large-scale numerical and symbolic simulations. From a biological viewpoint, the basic issues are many: (i) understanding common and shared structural motifs among biological processes; (ii) modeling biological noise due to interactions among a small number of key molecules or loss of synchrony; (iii) explaining the robustness of these systems in spite of such noise; and (iv) cataloging multistatic behavior and adaptation exhibited by many biological processes.


Subject(s)
Computational Biology/methods , Evolution, Molecular , Models, Biological , Animals , Biochemistry/methods , Cells/cytology , Cells/metabolism , Humans , Models, Genetic , Purines/metabolism , Software , Systems Analysis
SELECTION OF CITATIONS
SEARCH DETAIL