Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 280: 116522, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38843743

ABSTRACT

This study aimed to evaluate the effect of adding liquid extract of algae (Hypnea musciformis, Grateloupia acuminata, and Sargassum muticum) (HGS) and Magnesium oxide nanoparticles (MgO NPs) using this extract to rear water of Oreochromis niloticus, on improving culture water indices, growth performance, digestive enzyme, hemato-biochemical characters, immune, antioxidative responses, and resistance after challenged by Aeromonas hydrophila with specific refer to the potential role of the mixture in vitro as resistance against three strains bacteria (Aeromonas sobria, Pseudomonas fluorescens, P. aeruginosa) and one parasite (Cichlidogyrus tilapia). The first group represented control, HGS0, whereas the other group, HGS5, HGS10, and HGS15 mL-1 of liquid extract, as well as all groups with 7.5 µg mL-1 MgO-NPs added to culture water of O. niloticus, for 60 days. Data showed that increasing levels at HGS 10 and HGS15 mL-1 in to-culture water significantly enhanced growth-stimulating digestive enzyme activity and a significantly improved survival rate of O. niloticus after being challenged with A. hydrophila than in the control group. The total viability, coliform, fecal coliform count, and heavy metal in muscle partially decreased at HGS 10 and HGS15 mL-1 than in the control group. Correspondingly, the highest positive effect on hemato-biochemical indices was noticed at levels HGS 10 and HGS15 mL-1. Fish noticed an improvement in immune and antioxidant indices compared to control groups partially at HGS 10 and HGS15 mL-1. Interestingly, fish cultured in rearing water with the mixture provided downregulated the related inflammatory genes (HSP70, TNF, IL-1ß, and IL-8) partially at HGS15 mL-1. In vitro, the mixture showed positive efficiency as an antibacterial and partially antiparasitic at HGS 10 and HGS15 mL-1. This study proposes utilizing a mixture of (HGS) and (MgO-NPs) with optimum levels of 10-15 mL-1 in cultured water to improve water indices, growth, health status, and increased resistance of O. niloticus against bacterial and parasitic infection.


Subject(s)
Cichlids , Disease Resistance , Magnesium Oxide , Water Quality , Animals , Magnesium Oxide/pharmacology , Cichlids/immunology , Disease Resistance/drug effects , Seaweed , Fish Diseases/microbiology , Fish Diseases/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nanoparticles , Green Chemistry Technology , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Aeromonas hydrophila/drug effects , Sargassum
2.
Malar J ; 22(1): 368, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041142

ABSTRACT

BACKGROUND: Anopheles pharoensis has a major role in transmitting several human diseases, especially malaria, in Egypt?. Controlling Anopheles is considered as an effective strategy to eliminate the spread of malaria worldwide. Galaxaura rugosa is a species of red algae found in tropical to subtropical marine environments. The presence of G. rugosa is indicative of the ecosystem's overall health. The current work aims to investigate UPLC/ESI/MS profile of G. rugosa methanol and petroleum ether extracts and its activity against An. pharoensis and non-target organisms, Danio rerio and Daphnia magna. METHODS: Galaxaura rugosa specimens have been identified using DNA barcoding for the COI gene and verified as G. rugosa. The UPLC/ESI/MS profiling of G. rugosa collected from Egypt was described. The larvicidal and repellent activities of G. rugosa methanol and petroleum ether extracts against An. pharoensis were evaluated, as well as the toxicity of tested extracts on non-target organisms, Dan. rerio and Dap. magna. RESULTS: The UPLC/ESI/MS analysis of methanol and petroleum ether extracts led to the tentative identification of 57 compounds belonging to different phytochemical classes, including flavonoids, tannins, phenolic acids, phenyl propanoids. Larval mortality was recorded at 93.33% and 90.67% at 80 and 35 ppm of methanol and petroleum ether extracts, respectively, while pupal mortality recorded 44.44 and 22.48% at 35 and 30 ppm, respectively. Larval duration was recorded at 5.31 and 5.64 days by methanol and petroleum ether extracts at 80 and 35 ppm, respectively. A decrease in acetylcholinesterase (AChE) level and a promotion in Glutathione-S-transferase (GST) level of An. pharoensis 3rd instar larvae were recorded by tested extracts. The petroleum ether extract was more effective against An. pharoensis starved females than methanol extract. Also, tested extracts recorded LC50 of 1988.8, 1365.1, and 11.65, 14.36 µg/mL against Dan. rerio, and Dap. magna, respectively. CONCLUSIONS: Using red algae derivatives in An. pharoensis control could reduce costs and environmental impact and be harmless to humans and other non-target organisms.


Subject(s)
Anopheles , Culex , Insecticides , Malaria , Rhodophyta , Animals , Humans , Zebrafish , Daphnia , Environmental Biomarkers , Mosquito Vectors , Methanol/analysis , Methanol/pharmacology , Acetylcholinesterase/analysis , Ecosystem , Plant Extracts/pharmacology , Solvents/analysis , Solvents/pharmacology , Larva , Insecticides/pharmacology , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...