Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Gene ; 904: 148216, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38307219

ABSTRACT

Multiple post-receptor intracellular alterations such as impaired glucose transfer, glucose phosphorylation, decreased glucose oxidation, and glycogen production contribute to insulin resistance (IR) in skeletal muscle, manifested by diminished insulin-stimulated glucose uptake. Type-2 diabetes mellites (T2DM) has caused by IR, which is also seen in obese patients and those with metabolic syndrome. The Vitamin-D receptor (VDR) and poly unsaturated fatty acids (PUFAs) roles in skeletal muscle growth, shapes, and function for combating type-2 diabetes have been clarified throughout this research. VDR and PUFAs appears to show a variety of effects on skeletal muscle, in addition it shows a promising role on bone and mineral homeostasis. Individuals having T2DM are reported to suffer from severe muscular weakness and alterations in shape of the muscle. Several studies have investigated the effect on VDR on muscular strength and mass, which leads to Vitamin-D deficiency (VDD) in individuals, in which most commonly seen in elderly. VDR has been shown to affect skeletal cellular proliferation, intracellular calcium handling, as well as genomic activity in a variety of different ways such as muscle metabolism, insulin sensitivity, which is the major characteristic pathogenesis for IR in combating T2DM. The identified VDR gene polymorphisms are ApaI, TaqI, FokI, and BsmI that are associated with T2DM. This review collates informations on the mechanisms by which VDR activation takes place in skeletal muscles. Despite the significant breakthroughs made in recent decades, various studies show that IR affects VDR and PUFAs metabolism in skeletal muscle. Therefore, this review collates the data to show the role of VDR and PUFAs in the skeletal muscles to combat T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Aged , Vitamin D , Diabetes Mellitus, Type 2/metabolism , Receptors, Calcitriol/genetics , Insulin Resistance/genetics , Vitamins , Muscle, Skeletal/metabolism , Glucose
2.
Plant Physiol Biochem ; 207: 108334, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219424

ABSTRACT

The exponentially increasing population and the demand for food is inextricably linked. This has shifted global attention to improving crop plant traits to meet global food demands. Potato (Solanum tuberosum L.) is a major non-grain food crop that is grown all over the world. Currently, some of the major global potato research work focuses on the significance of microRNAs (miRNAs) in potato. miRNAs are a type of non-coding RNAs that regulate the gene expression of their target mRNA genes by cleavage and/or their translational inhibition. This suggests an essential role of miRNAs in a multitude of plant biological processes, including maintenance of genome integrity, plant growth, development and maturation, and initiation of responses to various stress conditions. Therefore, engineering miRNAs to generate stress-resistant varieties of potato may result in high yield and improved nutritional qualities. In this review, we discuss the potato miRNAs specifically known to play an essential role in the various stages of the potato life cycle, conferring stress-resistant characteristics, and modifying gene expression. This review highlights the significance of the miRNA machinery in plants, especially potato, encouraging further research into engineering miRNAs to boost crop yields and tolerance towards stress.


Subject(s)
MicroRNAs , Solanum tuberosum , MicroRNAs/genetics , MicroRNAs/metabolism , Solanum tuberosum/metabolism , Plants/genetics , Plant Development , Gene Expression Regulation, Plant , Stress, Physiological/genetics
3.
3 Biotech ; 13(12): 419, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38037658

ABSTRACT

Lipoxygenases (LOXs) namely 9-LOXs and 13-LOXs catalyse the oxygenation of polyunsaturated fatty acids to produce fatty acid hydroperoxides which are crucial in growth, development and stress responses in plants. Here, we isolated and characterized a 2723-bp cDNA encoding a distinct 861-aa 9-LOX form, designated StKCLX-1, using tuber total RNA from an Indian potato cultivar, Kufri Chipsona-1 through RT-PCR. A total of 17 LOX genes distributed in different chromosomes were identified and characterized in the potato genome. Multiple sequence alignment revealed highly conserved amino acids in the crucial domains, motifs and variable N-terminal regions between the LOX classes. A total of 36 LOXs from potato, tomato and Arabidopsis were used in phylogenetic analysis. A 3-D structure of StKCLX-1 was predicted by AlphaFold tool, validated through the predicted local-distance difference test (pLDDT) and Ramachandran Plot. Molecular docking predicted the nature of receptor-ligand interactions. STRING database was used to predict the protein-protein interactions. Expression patterns of the LOXs in the potato organs were examined by Expression Atlas and semi-quantitative RT-PCR. 9-LOX activity was noticed at early stages of tuberization, and significantly increased in the freshly-harvested mature tubers. This report would be useful in gaining insights into the structure-function relationships of the LOXs and corresponding multigene family-prerequisites for understanding tuber development in potato.

4.
Ann Pharm Fr ; 81(6): 925-934, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37442293

ABSTRACT

Litchi (Litchi chinensis) is a widely consumed fruit that has been used in many food and health-promoting products worldwide. Litchi is a good source of nutrients including vitamin and minerals, dietary fibers, proteins, and carbohydrates. Of note, several studies have reported that the constituents of litchi fruits elicit antioxidant properties and help to maintain blood pressure, and reduce the risk of stroke and heart attack. An unclearly explained outbreak occurred in June 2019 in Muzaffarpur (Bihar), India resulted in the death of more than 150 children in a week, followed by a total of 872 cases and 176 deaths. This outbreak was associated with the consumption of Litchi fruits and the occurrence of acute encephalitis syndrome. In this high Litchi production region, a huge number of acute encephalitis syndrome cases have been registered in children in the past two decades with high mortality due to these neurological disorders linked to the consumption of litchi. While finding out the causes for this recurrent outbreak, whether or not it is caused by a virus or the phytotoxins of litchi is to be considered critical. Amongst the probable causes were observed to be methylene cyclopropyl acetic acid and hypoglycin-A found in unripe Litchi fruits which can cause hypoglycemia and as a plausible cause of AES outbreaks. This review addresses this recurrent outbreak in-depth exploring the possible causes and discusses the possible mechanisms by which phytotoxins of litchi such as hypoglycin A and methylene cyclopropylglycine which may elicit such toxic effects.

5.
Mol Biotechnol ; 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37061992

ABSTRACT

Gibberellins (GAs; tetracyclic di-terpenoid carboxylic acids) are endogenous plant growth regulators responsible for stimulating plant growth and development from seed germination to plant maturity. In potato (Solanum tuberosum L.), GA levels are known to be crucial in the complex process of tuberization. Gibberellin 2-oxidases (GA2oxs) inactivate bioactive GAs during stolon swelling and early stages of tuberization as evident from the predominant expression of a member of this gene family namely GA2ox1. We isolated and characterized a 1105-bp cDNA clone encoding a 340-aa GA2ox1 form, designated St-GA2ox1, using total RNA from growing tuber of a potato (Solanum tuberosum L.) cultivar, Kufri Chipsona-1 (KC-1) based on RT-PCR approach. A total of 26 GA2ox sequences were also retrieved from potato genome database and analysed. Multiple sequence alignment revealed sequence relatedness between the GA2oxs. Crucial protein motifs were identified. Phylogenetic analysis revealed the evolutionary relationships between the GA2oxs. Three-dimensional structure of St-GA2ox1 was predicted by using AlphaFold tool, validated by the predicted local-distance difference test and Ramachandran Plot. Structural analysis and molecular docking were carried out to identify domains, binding sites and affinity for the ligand. The STRING database and hydropathy analysis revealed the presence of a putative interaction site for other enzymes. Expression Atlas database and semi-quantitative RT-PCR revealed the expression patterns of various GA2ox forms in different potato organs. This comprehensive report would be useful in providing new insights into possible underlying mechanisms involved in tuber development, and could facilitate the targeted alteration of genes responsible to combat the stress and enhance tuber production.

6.
Phytother Res ; 37(3): 965-1002, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36255140

ABSTRACT

Capsicum annuum L., commonly known as chili pepper, is used as an important spice globally and as a crude drug in many traditional medicine systems. The fruits of C. annuum have been used as a tonic, antiseptic, and stimulating agent, to treat dyspepsia, appetites, and flatulence, and to improve digestion and circulation. The article aims to critically review the phytochemical and pharmacological properties of C. annuum and its major compounds. Capsaicin, dihydrocapsaicin, and some carotenoids are reported as the major active compounds with several pharmacological potentials especially as anticancer and cardioprotectant. The anticancer effect of capsaicinoids is mainly mediated through mechanisms involving the interaction of Ca2+ -dependent activation of the MAPK pathway, suppression of NOX-dependent reactive oxygen species generation, and p53-mediated activation of mitochondrial apoptosis in cancer cells. Similarly, the cardioprotective effects of capsaicinoids are mediated through their interaction with cellular transient receptor potential vanilloid 1 channel, and restoration of calcitonin gene-related peptide via Ca2+ -dependent release of neuropeptides and suppression of bradykinin. In conclusion, this comprehensive review presents detailed information about the traditional uses, phytochemistry, and pharmacology of major bioactive principles of C. annuum with special emphasis on anticancer, cardioprotective effects, and plausible toxic adversities along with food safety.


Subject(s)
Capsicum , Capsicum/chemistry , Spices , Capsaicin , Plant Extracts/chemistry , Fruit/chemistry , Camphor/analysis
7.
Crit Rev Food Sci Nutr ; 63(2): 192-223, 2023.
Article in English | MEDLINE | ID: mdl-34289769

ABSTRACT

Guava (Psidium guajava L.) tree (Myrtaceae family) bears fruit rich in vitamins, fiber, and other nutrients. While native to Latin America, guava is grown in many tropical and subtropical regions across the globe where it has long been used in traditional medicine to treat a myriad of ailments. Guava has been shown to exhibit a number of biological and pharmacological activities, such as antioxidant, anti-inflammatory, immunomodulatory, antimicrobial, antidiabetic, and anticancer properties. Several parts of the plant, including the leaves, fruits, seeds, peels, pulp, bark, and oil, produce phytochemicals with medicinal properties. Emerging research has found that guava bioactive phytochemicals exert antitumorigenic effects against various human malignancies through multiple mechanisms. While there are numerous individual studies that document the anticancer effects of guava constituents, an up-to-date, comprehensive, and critical review of available research data has not been performed. Therefore, the purpose of this review is to present a complete analysis of the cancer preventive and anticancer therapeutic potential of guava-derived products and guava constituents, with a focus on the cellular and molecular mechanisms of action. The bioavailability, pharmacokinetics, and toxicity of guava as well as limitations, challenges, and future directions of research have also been discussed.


Subject(s)
Neoplasms , Psidium , Humans , Medicine, Traditional , Neoplasms/drug therapy , Neoplasms/prevention & control
8.
Molecules ; 27(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36014458

ABSTRACT

Stinging nettle (Urtica dioica L., Urticaceae) is commonly found in Asia, Africa, and Europe and has a long history of being used as food and traditional medicine. Recently, this plant is gaining attention as a highly nutritious food, where fresh leaves are dried and used as powder or in other forms. Leaves are rich in many bioactive compounds. This review aims to cover the traditional uses in food and medicine, as well as its nutritional composition, including its bioactive chemical constituents and reported food functional activities. Various bioactive chemical constituents have been isolated from stinging nettle to date, such as flavonoids, phenolic acids, amino acid, carotenoids, and fatty acids. Stinging nettle extracts and its compounds, such as rutin, kaempferol, and vitamin A, are also used for their nutritional properties and as anti-inflammatory and antioxidant agents. Future studies should focus on the proper formulation and stability testing of the functional foods containing stinging nettle and their detailed activities in clinical studies.


Subject(s)
Urtica dioica , Urticaceae , Anti-Inflammatory Agents/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Urtica dioica/chemistry
10.
Cancers (Basel) ; 14(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35158798

ABSTRACT

Cancer is one of the major leading causes of death worldwide. Accumulating evidence suggests a strong relationship between specific dietary habits and cancer development. In recent years, a food-based approach for cancer prevention and intervention has been gaining tremendous attention. Among diverse dietary and medicinal plants, lotus (Nelumbo nucifera Gaertn., family Nymphaeaceae), also known as Indian lotus, sacred lotus or Chinese water lily, has the ability to effectively combat this disease. Various parts of N. nucifera have been utilized as a vegetable as well as an herbal medicine for more than 2000 years in the Asian continent. The rhizome and seeds of N. nucifera represent the main edible parts. Different parts of N. nucifera have been traditionally used to manage different disorders, such as fever, inflammation, insomnia, nervous disorders, epilepsy, hypertension, cardiovascular diseases, obesity, and hyperlipidemia. It is believed that numerous bioactive components, including alkaloids, polyphenols, terpenoids, steroids, and glycosides, are responsible for its various biological and pharmacological activities, such as antioxidant, anti-inflammatory, immune-modulatory, antiviral, hepatoprotective, cardioprotective, and hypoglycemic activities. Nevertheless, there is no comprehensive review with an exclusive focus on the anticancer attributes of diverse phytochemicals from different parts of N. nucifera. In this review, we have analyzed the effects of N. nucifera extracts, fractions and pure compounds on various organ-specific cancer cells and tumor models to understand the cancer-preventive and therapeutic potential and underlying cellular and molecular mechanisms of action of this interesting medicinal and dietary plant. In addition, the bioavailability, pharmacokinetics, and possible toxicity of N. nucifera-derived phytochemicals, as well as current limitations, challenges and future research directions, are also presented.

11.
Phytother Res ; 36(2): 571-671, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35172042

ABSTRACT

Vitex, the genus of the family Lamiaceae, comprises of about 230 species mostly distributed in the warm regions of Europe and temperate regions of Asia. Several Vitex species have been used as folk medicine in different countries for the treatment of various kinds of diseases and ailments. The main aim of this review is to collect and analyze the scientific information available about the Vitex species regarding their chemical constituents and pharmacological activities. The phytochemical investigation of various Vitex species has resulted in the isolation of about 556 chemical constituents belong to various chemical category viz. iridoids, diterpenoids, triterpenoids, flavonoids, lignans, sesquiterpenoids, monoterpenoids, ecdysteroids, and others. The crude extracts of different Vitex species as well as pure phytochemicals exhibited a wide spectrum of in-vitro and in-vivo pharmacological activities. In the present review, the scientific literature data on the ethnopharmacological, phytochemical, and pharmacological investigations on the genus Vitex are summarized. More attention should be given in future research to evaluate the pharmacological potential with detailed mechanism of actions for the pure compounds, extracts of plants from this genus. Moreover, their clinical study is needed to justify their use in modern medicine and to further exploring this genus for new drug discovery.


Subject(s)
Lamiaceae , Vitex , Ethnopharmacology , Medicine, Traditional/methods , Phytochemicals/therapeutic use , Phytotherapy/methods , Plant Extracts/chemistry
12.
Acta Pharm Sin B ; 11(7): 1740-1766, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34386319

ABSTRACT

The phytoecdysteroids (PEs) comprise a large group of biologically-active plant steroids, which have structures similar to those of insect-molting hormones. PEs are distributed in plants as secondary metabolites that offer protection against phytophagus (plant-eating) insects. When insects consume the plants containing these chemicals, they promptly molt and undergo metabolic destruction; the insects eventually die. Chemically, ecdysteroids are a group of polyhydroxylated ketosteroids that are structurally similar to androgens. The carbon skeleton of ecdysteroids is termed as cyclopentanoperhydro-phenanthrene with a ß-side chain at carbon-17. The essential characteristics of ecdysteroids are a cis-(5ß-H) junction of rings A and B, a 7-en-6-one chromophore, and a trans-(14α-OH) junction of rings C and D. Plants only synthesize PEs from mevalonic acid in the mevalonate pathway of the plant cell using acetyl-CoA as a precursor; the most common PE is 20-hydroxyecdysone. So far, over 400 PEs have been identified and reported, and a compilation of 166 PEs originating from 1998 has been previously reviewed. In the present review, we have summarized 212 new PEs reported between 1999 and 2019. We have also critically analyzed the biological, pharmacological, and medicinal properties of PEs to understand the full impact of these phytoconstituents in health and disease.

13.
Semin Cancer Biol ; 69: 52-68, 2021 02.
Article in English | MEDLINE | ID: mdl-32014609

ABSTRACT

Nanotechnology is reshaping health care strategies and is expected to exert a tremendous impact in the coming years offering better healthcare facilities. It has led to not only therapeutic drug delivery feasibility but also to diagnostics. Materials in the size of nano range (1-100 nm) used in the design, fabrication, regulation, and application of therapeutic drugs or devices are classified as medical nanotechnology and nanopharmacology. Delivery of more complex molecules to the specific site of action as well as gene therapy has pushed forward the nanoparticle-based drug delivery to its maximum. Areas that benefit from nano-based drug delivery systems are cancer, diabetes, infectious diseases, neurodegenerative diseases, blood disorders and orthopedic-related ailments. Moreover, development of nanotherapeutics with multi-functionalities has a considerable potential to fill the gaps that exist in the present therapeutic domain. In cancer treatment, nanomedicines have superiority over current therapeutic practices as they can effectively deliver the drug to the affected tissues, thus reducing drug toxicities. Along this line, polymeric conjugates of asparaginase and polymeric micelles of paclitaxel have recently been recommended for the treatment of various types of cancers. Nanotechnology-based therapeutics and diagnostics provide greater effectiveness with less or no toxicity concerns. Similarly, diagnostic imaging holds promising future applications with newer nano-level imaging elements. Advancements in nanotechnology have emerged to a newer direction which use nanorobotics for various applications in healthcare. Accordingly, this review comprehensively highlights the potentialities of various nanocarriers and nanomedicines for multifaceted applications in diagnostics and drug delivery, especially the potentialities of polymeric nanoparticle, nanoemulsion, solid-lipid nanoparticle, nanostructured lipid carrier, self-micellizing anticancer lipids, dendrimer, nanocapsule and nanosponge-based therapeutic approaches in the field of cancer. Furthermore, this article summarizes the most recent literature pertaining to the use of nano-technology in the field of medicine, particularly in treating cancer patients.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems , Nanomedicine , Nanoparticles/administration & dosage , Neoplasms/diagnosis , Neoplasms/drug therapy , Animals , Humans , Nanoparticles/chemistry
14.
Crit Rev Food Sci Nutr ; 61(13): 2125-2151, 2021.
Article in English | MEDLINE | ID: mdl-32506936

ABSTRACT

Mangifera indica L. (mango), a long-living evergreen plant belonging to the Anacardiaceae family, has been cultivated for thousands of years in the Indian subcontinent for its excellent fruits which represent a rich source of fiber, vitamin A and C, essential amino acids, and a plethora of phytochemicals. M. indica is extensively used in various traditional systems of medicine to prevent and treat several diseases. The health-promoting and disease-preventing effects of M. indica are attributed to a number of bioactive phytochemicals, including polyphenols, terpenoids, carotenoid and phytosterols, found in the leaf, bark, edible flesh, peel, and seed. M. indica has been shown to exhibit various biological and pharmacological activities, such as antioxidant, anti-inflammatory, immunomodulatory, antimicrobial, antidiabetic, antiobesity, and anticancer effects. There are a few studies conducted that have indicated the nontoxic nature of mango constituents. However, while there are numerous individual studies investigating anticancer effects of various constituents from the mango tree, an up-to-date, comprehensive and critical review of available research data has not been performed according to our knowledge. The purpose of this review is to present a comprehensive and critical evaluation of cancer preventive and anticancer therapeutic potential of M. indica and its phytochemicals with special focus on the cellular and molecular mechanisms of action. The bioavailability, pharmacokinetics, and safety profile of individual phytocomponents of M. indica as well as current limitations, challenges, and future directions of research have also been discussed.


Subject(s)
Mangifera , Neoplasms , Fruit , Humans , Neoplasms/drug therapy , Neoplasms/prevention & control , Phytochemicals/pharmacology , Plant Extracts/pharmacology
15.
Semin Cancer Biol ; 73: 219-264, 2021 08.
Article in English | MEDLINE | ID: mdl-33301861

ABSTRACT

Vegetables of the Allium genus, such as garlic (Allium sativum L.), onions, shallots, leaks, and chives, have been used for many years for food consumption and for medicinal purposes. Historical medical texts have indicated the therapeutic applications of garlic as an antitumor, laxative, diuretic, antibacterial and antifungal agent. Specifically, garlic's antitumor abilities have been traced back 3500 years as a chemotherapeutic agent used in Egypt. Other beneficial effects of garlic consumption include lowering blood pressure, blood cholesterol, sugar and lipids. The processing and aging of garlic result in the production of non-toxic organosulfur by-products. These sulfur-containing compounds, such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, alliin, S-allylcysteine, and S-allylmercaptocysteine, impact various stages of carcinogenesis. The anticancer mechanisms of action of these garlic-derived phytochemicals include altering mitochondrial permeability, inhibiting angiogenesis, enhancing antioxidative and proapoptotic properties, and regulating cell proliferation. All these effects of garlic's sulfur-compounds have been demonstrated in various human cancers. The intent of this literature research is to explore the potential of garlic-derived products and bioactive organosulfur compounds as cancer chemopreventive and chemotherapeutic agents. This investigation employs criteria for systematic review and critically analyzes published in vitro, in vivo and clinical studies. Concerns and limitations that have arisen in past studies regarding standards of measurement, bioavailability, and method of delivery are addressed. Overall, it is hoped that through this systematic and comprehensive review, future researchers can be acquainted with the updated data assembled on anticancer properties of garlic and its phytoconstituents.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Garlic/chemistry , Neoplasms , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Animals , Humans , Phytochemicals/chemistry , Plant Extracts/chemistry
16.
Medicines (Basel) ; 7(11)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182572

ABSTRACT

Background:Cocculus hirsutus (L.) W.Theob. (Menispermaceae) is a perennial climber distributed mostly in tropical and subtropical areas. The main aim of this article is to collect and analyze the scientific information related to traditional uses, bioactive chemical constituents and pharmacological activities. Methods: Scientific information on C. hirsutus was retrieved from the online bibliographic databases (e.g. MEDLINE/PubMed, SciFinder, Web of Science, Google Scholar and Scopus). Information regarding traditional uses was also acquired from secondary resources including books and proceedings. Results: Different plant parts of C. hirsutus were reported to be used for the treatment of fever, skin diseases, stomach disorders and urinary diseases. Alkaloids such as jasminitine, hirsutine, cohirsitine and their derivatives along with a few flavonoids, triterpene derivatives and volatile compounds were reported from whole plant or different plant parts. Extracts were evaluated for their antimicrobial, antidiabetic, immunomodulatory and hepatoprotective activities among others. Conclusion: Although widely used in traditional medicines, only a few studies have been performed related to chemical constituents. Most of the biological activity evaluations were carried out using in vitro evaluation methods and only a few studies were carried out in animal models. In the future, properly designed in vivo and clinical studies are necessary to evaluate the pharmacological activities of C. hirsutus along with bioassay-guided studies to isolate and identify the active constituents.

17.
Pharmacol Res ; 160: 105085, 2020 10.
Article in English | MEDLINE | ID: mdl-32683037

ABSTRACT

Goldenseal (Hydrastis canadensis L.) is a medicinal plant widely used in various traditional systems of medicine and as a food supplement. It has been traditionally used by Native Americans as a coloring agent and as medicinal remedy for common diseases and conditions like wounds, digestive disorders, ulcers, skin and eye ailments, and cancer. Over the years, goldenseal has become a popular food supplement in the USA and other regions. The rhizome of this plant has been used for the treatment of a variety of diseases including, gastrointestinal disorders, ulcers, muscular debility, nervous prostration, constipation, skin and eye infections, cancer, among others. Berberine is one of the most bioactive alkaloid that has been identified in different parts of goldenseal. The goldenseal extract containing berberine showed numerous therapeutic effects such as antimicrobial, anti-inflammatory, hypolipidemic, hypoglycemic, antioxidant, neuroprotective (anti-Alzheimer's disease), cardioprotective, and gastrointestinal protective. Various research finding suggest the health promoting effects of goldenseal components and their extracts. However, few studies have also suggested the possible neurotoxic, hepatotoxic and phototoxic activities of goldenseal extract and its alkaloids. Thus, large randomized, double-blind clinical studies need to be conducted on goldenseal supplements and their main alkaloids to provide more evidence on the mechanisms responsible for the pharmaceutical activity, clinical efficacy and safety of these products. Thus, it is very important to review the scientific information about goldenseal to understand about the current scenario.


Subject(s)
Berberine/pharmacology , Dietary Supplements , Hydrastis , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Animals , Berberine/adverse effects , Berberine/isolation & purification , Berberine/pharmacokinetics , Consumer Product Safety , Dietary Supplements/adverse effects , Food Safety , Herb-Drug Interactions , Humans , Hydrastis/chemistry , Hydrastis/toxicity , Phytochemicals/adverse effects , Phytochemicals/isolation & purification , Phytochemicals/pharmacokinetics , Plant Extracts/adverse effects , Plant Extracts/isolation & purification , Plant Extracts/pharmacokinetics , Risk Assessment , Toxicity Tests
18.
Anticancer Agents Med Chem ; 20(14): 1636-1647, 2020.
Article in English | MEDLINE | ID: mdl-32560616

ABSTRACT

BACKGROUND: Cancer is a dreadful disease causing thousands of deaths per year worldwide, which requires precision diagnostics and therapy. Although the selection of therapeutic regimens depends on the cancer type, chemotherapy remains a sustainable treatment strategy despite some of its known side-effects. To date, a number of natural products and their derivatives or analogues have been investigated as potent anticancer drugs. These drug discoveries have aimed for targeted therapy and reduced side-effects, including natural therapeutic regimens. OBJECTIVE: This review introduces a prospective fungal-derived polyphenol, Hispolon (HIS), as an anticancer agent. Accordingly, this review focuses on exploring the anticancer effect of hispolon based on information extracted from databases such as PubMed, ScienceDirect, MedLine, Web of Science, and Google Scholar. METHODS: A literature search in PubMed, ScienceDirect, MedLine, Web of Science, and Google Scholar was accomplished, using the keyword 'Hispolon', pairing with 'cancer', 'cytotoxicity', 'cell cycle arrest', 'apoptosis', 'metastasis', 'migration', 'invasion', 'proliferation', 'genotoxicity', 'mutagenicity', 'drug-resistant cancer', 'autophagy', and 'estrogen receptor. RESULTS: Database-dependent findings from reported research works suggest that HIS can exert anticancer effects by modulating multiple molecular and biochemical pathways, including cell cycle arrest, apoptosis, autophagy, inhibition of proliferation, metastasis, migration, and invasion. Moreover, HIS inhibits the estrogenic activity and exhibits chemoprevention prospects, possibly due to its protective effects such as anticancer and anti-inflammatory mechanisms. To date, a number of HIS derivatives and analogues have been introduced for their anticancer effects in numerous cancer cell lines. CONCLUSION: Data obtained from this review suggest that hispolon and some of its derivatives can be promising anticancer agents, and may become plant-based cancer chemotherapeutic leads for the development of potent anticancer drugs, alone or in combination with other chemotherapeutic agents.


Subject(s)
Antineoplastic Agents/pharmacology , Catechols/pharmacology , Fungi/chemistry , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Catechols/chemistry , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure
19.
Sci Rep ; 10(1): 4108, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32139771

ABSTRACT

Susceptibility to root-knot nematodes (Meloidogyne spp.) is one of the major factors limiting mungbean production in South and South-East Asia. Host-pest-environment interaction in mungbean and root-knot nematode (M. incognita) was investigated in multi-location field evaluation using 38 promising mungbean genotypes extracted from initial evaluation of 250 genotypes under sick plots considering second stage freshly hatched juvenile as inoculants. The extent of environmental and genotype-by-environment interactions (GGE) was assessed to comprehend the dynamism of resistance and identification of durable resistant mungbean genotypes. Among environmental factors, nematode activity was highly influenced by rainfall and minimum temperature. The GGE biplot and multiple comparison tests detected a higher proportion of genotype × environment (GE) interaction followed by genotype and environment on number of nematode galls, gall index and reproduction factor. The first two principal components (PCs) explained 64.33% and 66.99% of the total variation of the environment-centered gall scoring and reproduction factor data, respectively. The high GE variation indicated the presence of non-cross over interactions which justify the necessities of multi-location testing. Detection of non-redundant testing locations would expedite optimum resource utilization in future. The GGE biplot analysis identified genotypes such as PM-10-12, IPM-410-3 and NVL-641 as the outperforming and desirable genotypes with durable resistance against M. incognita which can be exploited in mungbean breeding programmes globally. On the contrary, the highest gall scoring and reproduction factor were recorded in genotype IPM-9901-8. Computation of confidence interval (CI) at 95% level through bootstrapping increased precision of GGE biplot towards genotype recommendation. Furthermore, total phenol content, ascorbic acid, phenlylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) activities were also higher in identified resistant genotypes and this information would be useful for devising mungbean breeding strategies in future for resistance against root-knot nematodes.


Subject(s)
Gene-Environment Interaction , Plant Diseases/parasitology , Tylenchoidea , Vigna/parasitology , Animals , Disease Resistance , Genotype , Plant Diseases/genetics , Vigna/genetics , Vigna/immunology
20.
Daru ; 28(1): 387-401, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32060737

ABSTRACT

Pain represents an unpleasant sensation linked to actual or potential tissue damage. In the early phase, the sensation of pain is caused due to direct stimulation of the sensory nerve fibers. On the other hand, the pain in the late phase is attributed to inflammatory mediators. Current medicines used to treat inflammation and pain are effective; however, they cause severe side effects, such as ulcer, anemia, osteoporosis, and endocrine disruption. Increased attention is recently being focused on the examination of the analgesic potential of phytoconstituents, such as glycosides of traditional medicinal plants, because they often have suitable biological activities with fewer side effects as compared to synthetic drugs. The purpose of this article is to review for the first time the current state of knowledge on the use of glycosides from medicinal plants to induce analgesia and anti-inflammatory effect. Various databases and search engines, including PubMed, ScienceDirect, Scopus, Web of Science and Google Scholar, were used to search and collect relevant studies on glycosides with antinociceptive activities. The results led to the identification of several glycosides that exhibited marked inhibition of various pain mediators based on different well-established assays. Additionally, these glycosides were found to induce most of the analgesic effects through cyclooxygenase and lipoxygenase pathways. These findings can be useful to identify new candidates which can be clinically developed as analgesics with better bioavailability and reduced side effects. Graphical abstract Analgesic mechanisms of plant glycosides.


Subject(s)
Analgesics/therapeutic use , Glycosides/therapeutic use , Pain/drug therapy , Animals , Humans , Phytotherapy , Plants, Medicinal
SELECTION OF CITATIONS
SEARCH DETAIL
...