Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20913, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38016980

ABSTRACT

Notch signaling is an evolutionarily conserved mechanism required for numerous types of cell fate decisions in metazoans. It mediates short-range communication between cells with receptors and ligands, both of which are expressed on the cell surfaces. In response to the ligand-receptor interaction, the ligand and the extracellular domain of the Notch receptor (NECD) in the complex are internalized into ligand-expressing cells by endocytosis, a prerequisite process for the conformational change of the membrane proximal region of Notch to induce critical proteolytic cleavages for its activation. Here we report that overexpression of transmembrane 2 (TM2) domain containing 3 (TM2D3), a mammalian homologue of Drosophila melanogaster Almondex (Amx), activates Notch1. This activation requires the ligand-binding domain in Notch1 and the C-terminal region containing TM2 domain in TM2D3. TM2D3 physically associates with Notch1 at the region distinct from the ligand-binding domain and enhances expression of Notch1 on the cell surface. Furthermore, cell surface expression of Notch1 and Notch2 is reduced in Tm2d3-deficient cells. Finally, amx-deficient Drosophila early embryos exhibit impaired endocytosis of NECD and Delta ligand, for which surface presentation of Notch is required. These results indicate that TM2D3 is an element involved in Notch signaling through the surface presentation.


Subject(s)
Drosophila Proteins , Receptors, Notch , Animals , Receptors, Notch/genetics , Receptors, Notch/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Ligands , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Mammals/metabolism
2.
Dev Growth Differ ; 62(1): 80-93, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31782145

ABSTRACT

Notch signaling plays crucial roles in the control of cell fate and physiology through local cell-cell interactions. The core processes of Notch signal transduction are well established, but the mechanisms that fine-tune the pathway in various developmental and post-developmental contexts are less clear. Drosophila almondex, which encodes an evolutionarily conserved double-pass transmembrane protein, was identified in the 1970s as a maternal-effect gene that regulates Notch signaling in certain contexts, but its mechanistic function remains obscure. In this study, we examined the role of almondex in Notch signaling during early Drosophila embryogenesis. We found that in addition to being required for lateral inhibition in the neuroectoderm, almondex is also partially required for Notch signaling-dependent single-minded expression in the mesectoderm. Furthermore, we found that almondex is required for proper subcellular Notch receptor distribution in the neuroectoderm, specifically during mid-stage 5 development. The absence of maternal almondex during this critical window of time caused Notch to accumulate abnormally in cells in a mesh-like pattern. This phenotype did not include any obvious change in subcellular Delta ligand distribution, suggesting that it does not result from a general vesicular-trafficking defect. Considering that dynamic Notch trafficking regulates signal output to fit the specific context, we speculate that almondex may facilitate Notch activation by regulating intracellular Notch receptor distribution during early embryogenesis.


Subject(s)
Drosophila Proteins/metabolism , Embryo, Nonmammalian/metabolism , Embryonic Development , Neurogenesis , Receptors, Notch/metabolism , Signal Transduction , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Receptors, Notch/genetics
SELECTION OF CITATIONS
SEARCH DETAIL