Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Methods ; 215: 17-27, 2023 07.
Article in English | MEDLINE | ID: mdl-37236433

ABSTRACT

The nucleosome is the fundamental building block of chromatin. Changes taking place at the nucleosome level are the molecular basis of chromatin transactions with various enzymes and factors. These changes are directly and indirectly regulated by chromatin modifications such as DNA methylation and histone post-translational modifications including acetylation, methylation, and ubiquitylation. Nucleosomal changes are often stochastic, unsynchronized, and heterogeneous, making it very difficult to monitor with traditional ensemble averaging methods. Diverse single-molecule fluorescence approaches have been employed to investigate the structure and structural changes of the nucleosome in the context of its interactions with various enzymes such as RNA Polymerase II, histone chaperones, transcription factors, and chromatin remodelers. We utilize diverse single-molecule fluorescence methods to study the nucleosomal changes accompanying these processes, elucidate the kinetics of these processes, and eventually learn the implications of various chromatin modifications in directly regulating these processes. The methods include two- and three-color single-molecule fluorescence resonance energy transfer (FRET), single-molecule fluorescence correlation spectroscopy, and fluorescence (co-)localization. Here we report the details of the two- and three-color single-molecule FRET methods we currently use. This report will help researchers design their single-molecule FRET approaches to investigating chromatin regulation at the nucleosome level.


Subject(s)
Fluorescence Resonance Energy Transfer , Nucleosomes , Fluorescence Resonance Energy Transfer/methods , Histones/metabolism , Chromatin/genetics , DNA Methylation
SELECTION OF CITATIONS
SEARCH DETAIL