Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
Add more filters










Publication year range
1.
J Cell Physiol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775127

ABSTRACT

Primary, glioblastoma, and secondary brain tumors, from metastases outside the brain, are among the most aggressive and therapeutically resistant cancers. A physiological barrier protecting the brain, the blood-brain barrier (BBB), functions as a deterrent to effective therapies. To enhance cancer therapy, we developed a cancer terminator virus (CTV), a unique tropism-modified adenovirus consisting of serotype 3 fiber knob on an otherwise Ad5 capsid that replicates in a cancer-selective manner and simultaneously produces a potent therapeutic cytokine, melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24). A limitation of the CTV and most other viruses, including adenoviruses, is an inability to deliver systemically to treat brain tumors because of the BBB, nonspecific virus trapping, and immune clearance. These obstacles to effective viral therapy of brain cancer have now been overcome using focused ultrasound with a dual microbubble treatment, the focused ultrasound-double microbubble (FUS-DMB) approach. Proof-of-principle is now provided indicating that the BBB can be safely and transiently opened, and the CTV can then be administered in a second set of complement-treated microbubbles and released in the brain using focused ultrasound. Moreover, the FUS-DMB can be used to deliver the CTV multiple times in animals with glioblastoma  growing in their brain thereby resulting in a further enhancement in survival. This strategy permits efficient therapy of primary and secondary brain tumors enhancing animal survival without promoting harmful toxic or behavioral side effects. Additionally, when combined with a standard of care therapy, Temozolomide, a further increase in survival is achieved. The FUS-DMB approach with the CTV highlights a noninvasive strategy to treat brain cancers without surgery. This innovative delivery scheme combined with the therapeutic efficacy of the CTV provides a novel potential translational therapeutic approach for brain cancers.

2.
PLoS One ; 19(1): e0296153, 2024.
Article in English | MEDLINE | ID: mdl-38165954

ABSTRACT

Leader cells direct collective migration through sensing cues in their microenvironment to determine migration direction. The mechanism by which leader cells sense the mechanical cue of organized matrix architecture culminating in a mechanical response is not well defined. In this study, we investigated the effect of organized collagen matrix fibers on leader cell mechanics and demonstrate that leader cells protrude along aligned fibers resulting in an elongated phenotype of the entire cluster. Further, leader cells show increased mechanical interactions with their nearby matrix compared to follower cells, as evidenced by increased traction forces, increased and larger focal adhesions, and increased expression of integrin-α2. Together our results demonstrate changes in mechanical matrix cues drives changes in leader cell mechanoresponse that is required for directional collective migration. Our findings provide new insights into two fundamental components of carcinogenesis, namely invasion and metastasis.


Subject(s)
Collagen , Cell Movement , Collagen/pharmacology
3.
Proc Natl Acad Sci U S A ; 120(45): e2307094120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37922327

ABSTRACT

Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.


Subject(s)
Bone Neoplasms , Melanoma , Prostatic Neoplasms , Male , Humans , Syntenins/genetics , Syntenins/metabolism , Melanoma/metabolism , Prostatic Neoplasms/genetics , Signal Transduction/genetics , Bone Neoplasms/genetics , Cell Line, Tumor , Tumor Microenvironment , Neoplasm Metastasis
4.
J Immunother Cancer ; 11(11)2023 11.
Article in English | MEDLINE | ID: mdl-37935566

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective therapies and with poor prognosis, causing 7% of all cancer-related fatalities in the USA. Considering the lack of effective therapies for this aggressive cancer, there is an urgent need to define newer and more effective therapeutic strategies. Polyinosine-polycytidylic acid (pIC) is a synthetic double-stranded RNA (dsRNA) which directly activates dendritic cells and natural killer cells inhibiting tumor growth. When pIC is delivered into the cytoplasm using polyethyleneimine (PEI), pIC-PEI, programmed-cell death is induced in PDAC. Transfection of [pIC]PEI into PDAC cells inhibits growth, promotes toxic autophagy and also induces apoptosis in vitro and in vivo in animal models. METHODS: The KPC transgenic mouse model that recapitulates PDAC development in patients was used to interrogate the role of an intact immune system in vivo in PDAC in response to [pIC]PEI. Antitumor efficacy and survival were monitored endpoints. Comprehensive analysis of the tumor microenvironment (TME) and immune cells, cytokines and chemokines in the spleen, and macrophage polarization were analyzed. RESULTS: Cytosolic delivery of [pIC]PEI induces apoptosis and provokes strong antitumor immunity in vivo in immune competent mice with PDAC. The mechanism underlying the immune stimulatory properties of [pIC]PEI involves Stat1 activation resulting in CCL2 and MMP13 stimulation thereby provoking macrophage polarization. [pIC]PEI induces apoptosis via the AKT-XIAP pathway, as well as macrophage differentiation and T-cell activation via the IFNγ-Stat1-CCL2 signaling pathways in PDAC. In transgenic tumor mouse models, [pIC]PEI promotes robust and profound antitumor activity implying that stimulating the immune system contributes to biological activity. The [pIC]PEI anti-PDAC effects are enhanced when used in combination with a standard of care (SOC) treatment, that is, gemcitabine. CONCLUSIONS: In summary, [pIC]PEI treatment is non-toxic toward normal pancreatic cells while displaying strong cytotoxic and potent immune activating activities in PDAC, making it an attractive therapeutic when used alone or in conjunction with SOC therapeutic agents, potentially providing a safe and effective treatment protocol with translational potential for the effective therapy of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/genetics , Chemokine CCL2/metabolism , Chemokine CCL2/therapeutic use , Cytoplasm/metabolism , Cytoplasm/pathology , Mice, Transgenic , Pancreatic Neoplasms/metabolism , Poly C/therapeutic use , STAT1 Transcription Factor/metabolism , Tumor Microenvironment
5.
Mol Cancer Ther ; 22(10): 1115-1127, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37721536

ABSTRACT

Genome-wide gene expression analysis and animal modeling indicate that melanoma differentiation associated gene-9 (mda-9, Syntenin, Syndecan binding protein, referred to as MDA-9/Syntenin) positively regulates melanoma metastasis. The MDA-9/Syntenin protein contains two tandem PDZ domains serving as a nexus for interactions with multiple proteins that initiate transcription of metastasis-associated genes. Although targeting either PDZ domain abrogates signaling and prometastatic phenotypes, the integrity of both domains is critical for full biological function. Fragment-based drug discovery and NMR identified PDZ1i, an inhibitor of the PDZ1 domain that effectively blocks cancer invasion in vitro and in vivo in multiple experimental animal models. To maximize disruption of MDA-9/Syntenin signaling, an inhibitor has now been developed that simultaneously binds and blocks activity of both PDZ domains. PDZ1i was joined to the second PDZ binding peptide (TNYYFV) with a PEG linker, resulting in PDZ1i/2i (IVMT-Rx-3) that engages both PDZ domains of MDA-9/Syntenin. IVMT-Rx-3 blocks MDA-9/Syntenin interaction with Src, reduces NF-κB activation, and inhibits MMP-2/MMP-9 expression, culminating in repression of melanoma metastasis. The in vivo antimetastatic properties of IVMT-Rx-3 are enhanced when combined with an immune-checkpoint inhibitor. Collectively, our results support the feasibility of engineering MDA-9 dual-PDZ inhibitors with enhanced antimetastatic activities and applications of IVMT-Rx-3 for developing novel therapeutic strategies effectively targeting melanoma and in principle, a broad spectrum of human cancers that also overexpress MDA-9/Syntenin.


Subject(s)
Melanoma , Animals , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Syntenins/chemistry , Signal Transduction , Peptides/metabolism
6.
Adv Cancer Res ; 160: 253-315, 2023.
Article in English | MEDLINE | ID: mdl-37704290

ABSTRACT

Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Oncogenes , Immunotherapy , Epigenomics
7.
Adv Cancer Res ; 159: 285-341, 2023.
Article in English | MEDLINE | ID: mdl-37268399

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Gemcitabine , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Drug Resistance, Neoplasm , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Tumor Microenvironment , Pancreatic Neoplasms
8.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166702, 2023 08.
Article in English | MEDLINE | ID: mdl-37044238

ABSTRACT

Chemoresistance is a primary cause of breast cancer treatment failure, and protein-protein interactions significantly contribute to chemoresistance during different stages of breast cancer progression. In pursuit of novel biomarkers and relevant protein-protein interactions occurring during the emergence of breast cancer chemoresistance, we used a computational predictive biological (CPB) approach. CPB identified associations of adhesion molecules with proteins connected with different breast cancer proteins associated with chemoresistance. This approach identified an association of Integrin ß1 (ITGB1) with chemoresistance and breast cancer stem cell markers. ITGB1 activated the Focal Adhesion Kinase (FAK) pathway promoting invasion, migration, and chemoresistance in breast cancer by upregulating Erk phosphorylation. FAK also activated Wnt/Sox2 signaling, which enhanced self-renewal in breast cancer. Activation of the FAK pathway by ITGB1 represents a novel mechanism linked to breast cancer chemoresistance, which may lead to novel therapies capable of blocking breast cancer progression by intervening in ITGB1-regulated signaling pathways.


Subject(s)
Breast Neoplasms , Integrin beta1 , Female , Humans , Biomarkers , Breast Neoplasms/drug therapy , Cell Line, Tumor , Drug Resistance, Neoplasm , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Integrin beta1/metabolism
9.
Adv Cancer Res ; 158: 73-161, 2023.
Article in English | MEDLINE | ID: mdl-36990539

ABSTRACT

Cancer cells display pervasive changes in DNA methylation, disrupted patterns of histone posttranslational modification, chromatin composition or organization and regulatory element activities that alter normal programs of gene expression. It is becoming increasingly clear that disturbances in the epigenome are hallmarks of cancer, which are targetable and represent attractive starting points for drug creation. Remarkable progress has been made in the past decades in discovering and developing epigenetic-based small molecule inhibitors. Recently, epigenetic-targeted agents in hematologic malignancies and solid tumors have been identified and these agents are either in current clinical trials or approved for treatment. However, epigenetic drug applications face many challenges, including low selectivity, poor bioavailability, instability and acquired drug resistance. New multidisciplinary approaches are being designed to overcome these limitations, e.g., applications of machine learning, drug repurposing, high throughput virtual screening technologies, to identify selective compounds with improved stability and better bioavailability. We provide an overview of the key proteins that mediate epigenetic regulation that encompass histone and DNA modifications and discuss effector proteins that affect the organization of chromatin structure and function as well as presently available inhibitors as potential drugs. Current anticancer small-molecule inhibitors targeting epigenetic modified enzymes that have been approved by therapeutic regulatory authorities across the world are highlighted. Many of these are in different stages of clinical evaluation. We also assess emerging strategies for combinatorial approaches of epigenetic drugs with immunotherapy, standard chemotherapy or other classes of agents and advances in the design of novel epigenetic therapies.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Chromatin , DNA Methylation , Epigenesis, Genetic , Histone Deacetylase Inhibitors/therapeutic use , Histones/metabolism , Neoplasms/drug therapy , Neoplasms/genetics
10.
Adv Cancer Res ; 158: xiii-xvi, 2023.
Article in English | MEDLINE | ID: mdl-36990540
11.
Hepatology ; 78(6): 1727-1741, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-36120720

ABSTRACT

BACKGROUND AND AIMS: The oncogene Melanoma differentiation associated gene-9/syndecan binding protein (MDA-9/SDCBP) is overexpressed in many cancers, promoting aggressive, metastatic disease. However, the role of MDA-9 in regulating hepatocellular carcinoma (HCC) has not been well studied. APPROACH AND RESULTS: To unravel the function of MDA-9 in HCC, we generated and characterized a transgenic mouse with hepatocyte-specific overexpression of MDA-9 (Alb/MDA-9). Compared with wild-type (WT) littermates, Alb/MDA-9 mice demonstrated significantly higher incidence of N-nitrosodiethylamine/phenobarbital-induced HCC, with marked activation and infiltration of macrophages. RNA sequencing (RNA-seq) in naive WT and Alb/MDA-9 hepatocytes identified activation of signaling pathways associated with invasion, angiogenesis, and inflammation, especially NF-κB and integrin-linked kinase signaling pathways. In nonparenchymal cells purified from naive livers, single-cell RNA-seq showed activation of Kupffer cells and macrophages in Alb/MDA-9 mice versus WT mice. A robust increase in the expression of Secreted phosphoprotein 1 (Spp1/osteopontin) was observed upon overexpression of MDA-9. Inhibition of NF-κB pathway blocked MDA-9-induced Spp1 induction, and knock down of Spp1 resulted in inhibition of MDA-9-induced macrophage migration, as well as angiogenesis. CONCLUSIONS: Alb/MDA-9 is a mouse model with MDA-9 overexpression in any tissue type. Our findings unravel an HCC-promoting role of MDA-9 mediated by NF-κB and Spp1 and support the rationale of using MDA-9 inhibitors as a potential treatment for aggressive HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Melanoma , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , NF-kappa B/metabolism , Syntenins/genetics , Syntenins/metabolism , Mice, Transgenic , Cell Line, Tumor
12.
Front Oncol ; 12: 812560, 2022.
Article in English | MEDLINE | ID: mdl-35402258

ABSTRACT

melanoma differentiation associated gene-7 or Interleukin-24 (mda-7, IL-24) displays expansive anti-tumor activity without harming corresponding normal cells/tissues. This anticancer activity has been documented in vitro and in vivo in multiple preclinical animal models, as well as in patients with advanced cancers in a phase I clinical trial. To enhance the therapeutic efficacy of MDA-7 (IL-24), we engineered a designer cytokine (a "Superkine"; IL-24S; referred to as M7S) with enhanced secretion and increased stability to engender improved "bystander" antitumor effects. M7S was engineered in a two-step process by first replacing the endogenous secretory motif with an alternate secretory motif to boost secretion. Among four different signaling peptides, the insulin secretory motif significantly enhanced the secretion of MDA-7 (IL-24) protein and was chosen for M7S. The second modification engineered in M7S was designed to enhance the stability of MDA-7 (IL-24), which was accomplished by replacing lysine at position K122 with arginine. This engineered "M7S Superkine" with increased secretion and stability retained cancer specificity. Compared to parental MDA-7 (IL-24), M7S (IL-24S) was superior in promoting anti-tumor and bystander effects leading to improved outcomes in multiple cancer xenograft models. Additionally, combinatorial therapy using MDA-7 (IL-24) or M7S (IL-24S) with an immune checkpoint inhibitor, anti-PD-L1, dramatically reduced tumor progression in murine B16 melanoma cells. These results portend that M7S (IL-24S) promotes the re-emergence of an immunosuppressive tumor microenvironment, providing a solid rationale for prospective translational applications of this therapeutic designer cytokine.

13.
Cancers (Basel) ; 14(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35326649

ABSTRACT

Progression-elevated gene-3 (PEG-3) and rat growth arrest and DNA damage-inducible gene-34 (GADD34) display significant sequence homology with regulation predominantly transcriptional. The rat full-length (FL) and minimal (min) PEG-3 promoter display cancer-selective expression in rodent and human tumors, allowing for cancer-directed regulation of transgenes, viral replication and in vivo imaging of tumors and metastases in animals, whereas the FL- and min-GADD34-Prom lack cancer specificity. Min-PEG-Prom and min-GADD34-Prom have identical sequences except for two single-point mutation differences (at -260 bp and +159 bp). Engineering double mutations in the min-GADD34-Prom produce the GAPE-Prom. Changing one base pair (+159) or both point mutations in the min-GADD34-Prom, but not the FL-GADD34-Prom, results in cancer-selective transgene expression in diverse cancer cells (including prostate, breast, pancreatic and neuroblastoma) vs. normal counterparts. Additionally, we identified a GATA2 transcription factor binding site, promoting cancer specificity when both min-PEG-Prom mutations are present in the GAPE-Prom. Taken together, introducing specific point mutations in a rat min-GADD34-Prom converts this non-cancer-specific promoter into a cancer-selective promoter, and the addition of GATA2 with existing AP1 and PEA3 transcription factors enhances further cancer-selective activity of the GAPE-Prom. The GAPE-Prom provides a genetic tool to specifically regulate transgene expression in cancer cells.

14.
Tissue Barriers ; 10(1): 1982349, 2022 01 02.
Article in English | MEDLINE | ID: mdl-34651545

ABSTRACT

Gap junctions are intercellular membrane channels consisting of connexin proteins, which contribute to direct cytoplasmic exchange of small molecules, substrates and metabolites between adjacent cells. These channels play important roles in neuronal differentiation, maintenance, survival and function. Gap junctions regulate differentiation of neurons from embryonic, neural and induced pluripotent stem cells. In addition, they control transdifferentiation of neurons from mesenchymal stem cells. The expression and levels of several connexins correlate with cell cycle changes and different stages of neurogenesis. Connexins such as Cx36, Cx45, and Cx26, play a crucial role in neuronal function. Several connexin knockout mice display lethal or severely impaired phenotypes. Aberrations in connexin expression is frequently associated with various neurodegenerative disorders. Gap junctions also act as promising therapeutic targets for neuronal regenerative medicine, because of their role in neural stem cell integration, injury and remyelination.


Subject(s)
Connexins , Gap Junctions , Animals , Connexins/analysis , Connexins/genetics , Connexins/metabolism , Gap Junctions/chemistry , Gap Junctions/metabolism , Mice , Mice, Knockout , Neurons/chemistry , Neurons/metabolism
15.
Comput Biol Med ; 141: 105052, 2022 02.
Article in English | MEDLINE | ID: mdl-34836625

ABSTRACT

BACKGROUND: Aloe vera extract and its bioactive compounds possess anti-proliferative properties against cancer cells. However, no detailed molecular mechanism of action studies has been reported. We have now employed a computational approach to scrutinize the molecular mechanism of lead bioactive compounds from Aloe vera that potentially inhibit DNA synthesis. METHODS: Initially, the anti-proliferative activity of Aloe vera extract was examined in human breast cancer cells (in vitro/in vivo). Later on, computational screening of bioactive compounds from Aloe vera targeting DNA was performed by molecular docking and molecular dynamics simulation. RESULTS: In-vitro and in-vivo studies confirm that Aloe vera extract effectively suppresses the growth of breast cancer cells without significant cytotoxicity towards non-cancerous normal immortal cells. Computational screening predicts that growth suppression may be due to the presence of DNA intercalating bioactive compounds (riboflavin, daidzin, aloin, etc.) contained in Aloe vera. MM/PBSA calculation showed that riboflavin has a higher binding affinity at the DNA binding sites compared to standard drug daunorubicin. CONCLUSIONS: These observations support the hypothesis that riboflavin may be exploited as an anti-proliferative DNA intercalating agent to prevent cancer and is worthy of testing for the management of cancer by performing more extensive pre-clinical and if validated clinical trials.


Subject(s)
Aloe , Neoplasms , Aloe/chemistry , DNA , Humans , Molecular Docking Simulation , Plant Extracts/pharmacology
16.
Life Sci ; 287: 120141, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34774620

ABSTRACT

AIMS: SARI (suppressor of activator protein (AP)-1, regulated by interferon (IFN) was identified as a novel tumor suppressor by applying subtraction hybridization to terminally differentiating human melanoma cells. The anti-tumor activity of SARI and the correlation between expression and cancer aggression and metastasis has been examined in multiple cancers, but its potential role in oral squamous cell carcinomas (OSCC) has not been explored. METHODS: SARI expression was monitored in tumor tissues of OSCC patients by performing immunohistochemistry. Ectopic expression of SARI was achieved using a replication defective adenovirus expressing SARI (Ad.SARI). A nude mouse xenograft model was used to evaluate the in vivo efficacy of SARI. Endoplasmic reticulum (ER) stress was monitored in SARI infected OSCC cells by confocal microscopy. KEY FINDING: In this study, we demonstrate that SARI expression is significantly lower in OSCC tumor tissue as compared to normal adjacent tissue. Ectopic expression of SARI induces cancer-specific cell death in human OSCC cell lines and in a paclitaxel plus cisplatin non-responder OSCC patient-derived (PDC1) cell line. Mechanistically, SARI inhibits zinc finger protein GLI1 expression through induction of endoplasmic reticulum (ER) stress. Using a nude mouse xenograft model, we show that intratumoral injections of Ad.SARI significantly reduce PDC1 tumor burden, whereas treatment with an ER stress inhibitor efficiently rescues tumors from growth inhibition. SIGNIFICANCE: Overall, our data provides a link between induction of ER stress and inhibition of the GLI1/Hedgehog signaling pathway and the tumor suppressive activity of SARI in the context of OSCC.


Subject(s)
Basic-Leucine Zipper Transcription Factors/biosynthesis , Carcinoma, Squamous Cell/metabolism , Endoplasmic Reticulum Stress/physiology , Growth Inhibitors/biosynthesis , Mouth Neoplasms/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Tumor Suppressor Proteins/biosynthesis , Animals , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Survival/physiology , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mouth Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Xenograft Model Antitumor Assays/methods
17.
Adv Cancer Res ; 152: 103-177, 2021.
Article in English | MEDLINE | ID: mdl-34353436

ABSTRACT

Metabolism is an important part of tumorigenesis as well as progression. The various cancer metabolism pathways, such as glucose metabolism and glutamine metabolism, directly regulate the development and progression of cancer. The pathways by which the cancer cells rewire their metabolism according to their needs, surrounding environment and host tissue conditions are an important area of study. The regulation of these metabolic pathways is determined by various oncogenes, tumor suppressor genes, as well as various constituent cells of the tumor microenvironment. Expanded studies on metabolism will help identify efficient biomarkers for diagnosis and strategies for therapeutic interventions and countering ways by which cancers may acquire resistance to therapy.


Subject(s)
Neoplasms , Cell Transformation, Neoplastic , Humans , Metabolic Networks and Pathways , Neoplasms/drug therapy , Neoplasms/genetics , Oncogenes , Tumor Microenvironment
18.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34016751

ABSTRACT

Melanoma differentiation associated gene-9 (MDA-9), Syntenin-1, or syndecan binding protein is a differentially regulated prometastatic gene with elevated expression in advanced stages of melanoma. MDA-9/Syntenin expression positively associates with advanced disease stage in multiple histologically distinct cancers and negatively correlates with patient survival and response to chemotherapy. MDA-9/Syntenin is a highly conserved PDZ-domain scaffold protein, robustly expressed in a spectrum of diverse cancer cell lines and clinical samples. PDZ domains interact with a number of proteins, many of which are critical regulators of signaling cascades in cancer. Knockdown of MDA-9/Syntenin decreases cancer cell metastasis, sensitizing these cells to radiation. Genetic silencing of MDA-9/Syntenin or treatment with a pharmacological inhibitor of the PDZ1 domain, PDZ1i, also activates the immune system to kill cancer cells. Additionally, suppression of MDA-9/Syntenin deregulates myeloid-derived suppressor cell differentiation via the STAT3/interleukin (IL)-1ß pathway, which concomitantly promotes activation of cytotoxic T lymphocytes. Biologically, PDZ1i treatment decreases metastatic nodule formation in the lungs, resulting in significantly fewer invasive cancer cells. In summary, our observations indicate that MDA-9/Syntenin provides a direct therapeutic target for mitigating aggressive breast cancer and a small-molecule inhibitor, PDZ1i, provides a promising reagent for inhibiting advanced breast cancer pathogenesis.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Interleukin-1beta/genetics , Lung Neoplasms/drug therapy , Oxadiazoles/pharmacology , Pyrimidines/pharmacology , Syntenins/genetics , Animals , Antineoplastic Agents/chemical synthesis , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Line, Tumor , Chemokine CCL11/genetics , Chemokine CCL11/immunology , Chemokine CCL17/genetics , Chemokine CCL17/immunology , Female , Gene Expression Regulation, Neoplastic , Humans , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/immunology , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/immunology , Interleukin-5/genetics , Interleukin-5/immunology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Oxadiazoles/chemical synthesis , Pyrimidines/chemical synthesis , Signal Transduction , Syntenins/antagonists & inhibitors , Syntenins/immunology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
19.
Adv Cancer Res ; 150: 147-208, 2021.
Article in English | MEDLINE | ID: mdl-33858596

ABSTRACT

Autophagy is a fundamental cellular process, which allows cells to adapt to metabolic stress through the degradation and recycling of intracellular components to generate macromolecular precursors and produce energy. Autophagy is also critical in maintaining cellular/tissue homeostasis, as well preserving immunity and preventing human disease. Deregulation of autophagic processes is associated with cancer, neurodegeneration, muscle and heart disease, infectious diseases and aging. Research on a variety of stem cell types establish that autophagy plays critical roles in normal and cancer stem cell quiescence, activation, differentiation, and self-renewal. Considering its critical function in regulating the metabolic state of stem cells, autophagy plays a dual role in the regulation of normal and cancer stem cell senescence, and cellular responses to various therapeutic strategies. The relationships between autophagy, senescence, dormancy and apoptosis frequently focus on responses to various forms of stress. These are interrelated processes that profoundly affect normal and abnormal human physiology that require further elucidation in cancer stem cells. This review provides a current perspective on autophagy and senescence in both normal and cancer stem cells.


Subject(s)
Autophagy/physiology , Cellular Senescence/physiology , Neoplastic Stem Cells/physiology , Stem Cells/physiology , Aging/physiology , Animals , Apoptosis/physiology , Cell Differentiation/physiology , Humans , Neoplastic Stem Cells/pathology , Stress, Physiological/physiology
20.
J Cell Physiol ; 236(11): 7775-7791, 2021 11.
Article in English | MEDLINE | ID: mdl-33834508

ABSTRACT

Neuroblastoma (NB) is a common solid extracranial tumor developing in pediatric populations. NB can spontaneously regress or grow and metastasize displaying resistance to therapy. This tumor is derived from primitive cells, mainly those of the neural crest, in the sympathetic nervous system and usually develops in the adrenal medulla and paraspinal ganglia. Our understanding of the molecular characteristics of human NBs continues to advance documenting abnormalities at the genome, epigenome, and transcriptome levels. The high-risk tumors have MYCN oncogene amplification, and the MYCN transcriptional regulator encoded by the MYCN oncogene is highly expressed in the neural crest. Studies on the biology of NB has enabled a more precise risk stratification strategy and a concomitant reduction in the required treatment in an expanding number of cases worldwide. However, newer treatment strategies are mandated to improve outcomes in pediatric patients who are at high-risk and display relapse. To improve outcomes and survival rates in such high-risk patients, it is necessary to use a multicomponent therapeutic approach. Accuracy in clinical staging of the disease and assessment of the associated risks based on biological, clinical, surgical, and pathological criteria are of paramount importance for prognosis and to effectively plan therapeutic approaches. This review discusses the staging of NB and the biological and genetic features of the disease and several current therapies including targeted delivery of chemotherapy, novel radiation therapy, and immunotherapy for NB.


Subject(s)
Antineoplastic Agents/therapeutic use , Immunotherapy , Neuroblastoma/therapy , Animals , Antineoplastic Agents/adverse effects , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy/adverse effects , Molecular Targeted Therapy , Neoplasm Staging , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Radiation Dosage , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...