Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Medicines (Basel) ; 11(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38248717

ABSTRACT

Background: The objective of this study is to find novel antineoplastic agents that display greater toxicity to malignant cells than to neoplasms. In addition, the mechanisms of action of representative compounds are sought. This report describes the cytotoxicity of a number of dimers of 3,5-bis(benzylidene)-4-piperidones against human malignant cells (promyelocytic leukemia HL-60 and squamous cell carcinoma HSC-2, HSC-3, and HSC-4). Methods: Tumor specificity was evaluated by the selectivity index (SI), that is the ratio of the mean CC50 for human non-malignant oral cells (gingival fibroblasts, pulp cells, periodontal ligament fibroblasts) to that for malignant cells. Results: The compounds were highly toxic to human malignant cells. On the other hand, these molecules were less toxic to human non-malignant cells. In particular, a potent lead molecule, 3b, was identified. A QSAR study revealed that the placement of electron-releasing and hydrophilic substituents into the aryl rings led to increases in cytotoxic potencies. The modes of action of a lead compound discovered in this study designated 3b were the activation of caspases-3 and -7, as well as causing PARP1 cleavage and G2 arrest, followed by sub-G1 accumulation in the cell cycle. This compound also depolarized the mitochondrial membrane and generated reactive oxygen species in human colon carcinoma HCT116 cells. In conclusion, this study has revealed that, in general, the compounds described in this report are tumor-selective cytotoxins.

2.
Medicines (Basel) ; 10(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37755244

ABSTRACT

There is a need for novel antiepileptic agents whose modes of action differ from those of current antiepileptic drugs. The objective of this study was to determine whether 1-diethylamino-3-phenylprop-2-en-1-one (2) could prevent or at least diminish convulsions caused by different mechanisms. This amide afforded protection in the maximal electroshock and subcutaneous pentylenetetrazole screens when given intraperitoneally to both mice and rats. A number of specialized tests in mice were conducted and are explained in the text. They revealed (2) to have efficacy in the 6 Hz psychomotor seizure test, the corneal kindling model, the mouse temporal epilepsy screen and a peripheral neuronal transmission test using formalin. Three screens in rats were undertaken, which revealed that (2) blocked chloride channels, inhibited peripheral neuronal transmission (tested using sciatic ligation and von Frey fibres) and afforded protection in the lamotrigine-resistant kindled rat model. The biodata generated reveal that (2) is an important lead molecule in the quest for novel structures to combat epilepsy.

3.
Molecules ; 27(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36235258

ABSTRACT

Two series of novel unsymmetrical 3,5-bis(benzylidene)-4 piperidones 2a-f and 3a-e were designed as candidate antineoplastic agents. These compounds display potent cytotoxicity towards two colon cancers, as well as several oral squamous cell carcinomas. These compounds are less toxic to various non-malignant cells giving rise to large selectivity index (SI) figures. Many of the compounds are also cytotoxic towards CEM lymphoma and HL-60 leukemia cells. Representative compounds induced apoptotic cell death characterized by caspase-3 activation and subG1 accumulation in some OSCC cells, as well as the depolarization of the mitochondrial membrane potential in CEM cells. A further line of inquiry was directed to finding if the SI values are correlated with the atomic charges on the olefinic carbon atoms. The potential of these compounds as antineoplastic agents was enhanced by an ADME (absorption, distribution, metabolism, and excretion) evaluation of five lead molecules, which revealed no violations.


Subject(s)
Antineoplastic Agents , Piperidones , Antineoplastic Agents/pharmacology , Apoptosis , Carbon/pharmacology , Caspase 3/pharmacology , Cell Line, Tumor , Humans , Piperidones/pharmacology
4.
Arch Pharm (Weinheim) ; 355(11): e2200236, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35986437

ABSTRACT

This study outlines a number of studies of dichloroacetic acid (DCA) and some of its derivatives. Although DCA has low cytotoxic potencies, various structural modifications are described which result in potent cytotoxins. In particular, hybrid molecules created from DCA and other bioactive molecules whose modes of action differ from DCA are particularly promising as candidate anticancer agents. Considerable emphasis in this review is placed on various series of compounds that incorporate both platinum and DCA into their structures. In addition, the importance of the formulation of some of the bioactive compounds described herein is revealed.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Dichloroacetic Acid/chemistry , Dichloroacetic Acid/toxicity , Coordination Complexes/chemistry , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cytotoxins/pharmacology
5.
Invest New Drugs ; 40(5): 905-921, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35793039

ABSTRACT

Cancer remains the second most common cause of death in the US. Due to a recurrent problem with anticancer drug resistance, there is a current need for anticancer drugs with distinct modes of action for combination drug therapy We have tested two novel piperidone compounds, named 2608 (1-dichloroacetyl - 3,5-bis(3,4-difluorobenzylidene)-4-piperidone) and 2610 (1-dichloroacetyl-3,5-bis(3,4-dichlorobenzylidene)-4-piperidone), for their potential cytotoxicity on numerous human cancer cell lines. We found that both compounds were cytotoxic for breast, pancreatic, leukemia, lymphoma, colon, and fibroblast cell lines, with a cytotoxic concentration 50% (CC50) in the low micromolar to nanomolar concentration range. Further assays focused primarily on an acute lymphoblastic lymphoma and colon cancer cell lines since they were the most sensitive and resistant to the experimental piperidones. The cell death mechanism was evaluated through assays commonly used to detect the induction of apoptosis. These assays revealed that both 2608 and 2610 induced reactive oxygen species (ROS) accumulation, mitochondrial depolarization, and activated caspase-3/7. Our findings suggest that the piperidones induced cell death via the intrinsic apoptotic pathway. Additional assays revealed that both piperidones cause cell cycle alteration in lymphoma and colon cell lines. Both piperidones elicited DNA fragmentation, as evidenced by an increment in the sub-G0/G1 subpopulation in both cell lines. Similar to other related compounds, both piperidones were found to act as proteasome inhibitors by increasing the levels of poly-ubiquitinated proteins in both lymphoma and colon cell lines. Hence, the two piperidones exhibited attractive cytotoxic properties and suitable mechanisms of action, which makes them good candidates as anticancer drugs.


Subject(s)
Antineoplastic Agents , Lymphoma , Piperidones , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Humans , Male , Piperidones/pharmacology , Prostate
6.
Medicines (Basel) ; 9(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35736248

ABSTRACT

A series of 3,5-bis(benzylidene)-1-dichloroacetyl-4-piperidones 1a-l was evaluated against Ca9-22, HSC-2, HSC-3, and HSC-4 squamous cell carcinomas. Virtually all of the compounds displayed potent cytotoxicity, with 83% of the CC50 values being submicromolar and several CC50 values being in the double digit nanomolar range. The compounds were appreciably less toxic to human HGF, HPLF, and HPC non-malignant cells, which led to some noteworthy selectivity index (SI) figures. From these studies, 1d,g,k emerged as the lead molecules in terms of their potencies and SI values. A Quantitative Structure-Activity Relationship (QSAR) study revealed that cytotoxic potencies and potency-selectivity expression figures increased when the magnitude of the sigma values in the aryl rings was elevated. The modes of action of the representative cytotoxins in Ca9-22 cells were found to include G2/M arrest and stimulation of the cells to undergo mitosis and cause poly(ADP-ribose) polymerase (PARP) and procaspase 3 cleavage.

7.
Med Chem ; 18(9): 1001-1012, 2022.
Article in English | MEDLINE | ID: mdl-35319387

ABSTRACT

BACKGROUND: The incidence of cancer has been increasing worldwide. Unfortunately, the drugs used in cancer chemotherapy are toxic to both neoplasms and normal tissues, while many available medications have low potencies. Conjugated α,ß-unsaturated ketones differ structurally from contemporary anticancer medications , some of which have noteworthy antineoplastic properties. OBJECTIVES: This study aimed to design and synthesize highly potent cytotoxins with far greater toxicity to neoplasms than to non-malignant cells. METHODS: A series of N-acyl-3,5-bis(benzylidene)-4-piperidone hydrochlorides 4a-n were prepared and evaluated against Ca9-22, HSC-2, HSC-3, and HSC-4 squamous cell carcinomas as well as against HGF, HPLF, and HPC non-malignant cells. QSAR and western blot analyses were performed. RESULTS: The majority of compounds display submicromolar CC50 values towards the neoplasms; the figures for some of the compounds are below 10-7 M. In general, 4a-n have much lower CC50 values than those of melphalan, 5-fluorouracil, and methotrexate, while some compounds are equitoxic with doxorubicin. The compounds are far less toxic to the non-malignant cells, giving rise to substantial selectivity index (SI) figures. A QSAR study revealed that both potency and the SI data were controlled to a large extent by the electronic properties of the substituents in the arylidene aryl rings. Two representative compounds, 4f and 4g, caused apoptosis in HSC-2 cells. CONCLUSION: The compounds in series 4 are potent cytotoxins displaying tumor-selective toxicity. In particular, 4g with an average CC50 value of 0.04 µM towards four malignant cell lines and a selectivity index of 46.3 is clearly a lead molecule that should be further evaluated.


Subject(s)
Antineoplastic Agents , Neoplasms , Piperidones , Antineoplastic Agents/toxicity , Apoptosis , Cell Line, Tumor , Cytotoxins/toxicity , Drug Screening Assays, Antitumor , Piperidones/toxicity , Structure-Activity Relationship
8.
Pharmacol Rep ; 74(1): 159-174, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34448104

ABSTRACT

BACKGROUND: Cancer is an ongoing worldwide health problem. Although chemotherapy remains the mainstay therapy for cancer, it is not always effective and has detrimental side effects. Here, we present piperidone compounds P3, P4, and P5 that selectively target cancer cells via protein- and stress-mediated mechanisms. METHODS: We assessed typical apoptotic markers including phosphatidylserine externalization, caspase-3 activation, and DNA fragmentation through flow cytometry. Then, specific markers of the intrinsic pathway of apoptosis including the depolarization of the mitochondria and the generation of reactive oxygen species (ROS) were investigated. Finally, we utilized western blot techniques, RT-qPCR, and observed the cell cycle profile after compound treatment to evaluate the possible behavior of these compounds as proteasome inhibitors. For statistical analyses, we employed the one-way ANOVA followed by Bonferroni post hoc test. RESULTS: P3, P4, and P5 induce cytotoxic effects towards tumorigenic cells, as opposed to non-cancerous cells, at the low micromolar range. Compound treatment leads to the activation of the intrinsic pathway of apoptosis. The accumulation of poly-ubiquitinated proteins and the pro-apoptotic protein Noxa, both typically observed after proteasome inhibition, occurs after P3, P4, and P5 treatment. The stress-related genes PMAIP1, ATF3, CHAC1, MYC, and HMOX-1 were differentially regulated to contribute to the cytotoxic activity of P3-P5. Finally, compound P5 causes cell cycle arrest at the G2/M phase. CONCLUSION: Taken together, compounds P3, P4, and P5 exhibit strong potential as anticancer drug candidates as shown by strong cytotoxic potential, activation of the intrinsic pathway of apoptosis, and show typical proteasome inhibitor characteristics.


Subject(s)
Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Piperidones/pharmacology , Activating Transcription Factor 3/metabolism , Antineoplastic Agents/pharmacology , Caspase 3/metabolism , Cell Line, Tumor , DNA Fragmentation/drug effects , Heme Oxygenase-1/metabolism , Humans , Proteasome Inhibitors/pharmacology , Proteolysis/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism
9.
Medicines (Basel) ; 8(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34940290

ABSTRACT

A series of 3,5-bis(benzylidene)-4-piperidones 2a-u were prepared as candidate cytotoxic agents. In general, the compounds are highly toxic to human gingival carcinoma (Ca9-22), human squamous carcinoma-2 (HSC-2) and human squamous carcinoma-4 (HSC-4) neoplasms, but less so towards non-malignant human gingival fibroblast (HGF), human periodontal ligament fibroblast (HPLF) and human pulp cells (HPC), thereby demonstrating tumour-selective toxicity. A further study revealed that most of the compounds in series 2 were more toxic to the human Colo-205 adenocarcinoma cell line (Colo-205), human HT29 colorectal adenocarcinoma cells (HT-29) and human CEM lymphoid cells (CEM) neoplasms than towards non-malignant human foreskin Hs27 fibroblast line (Hs27) cells. The potency of the cytotoxins towards the six malignant cell lines increased as the sigma and sigma star values of the aryl substituents rose. Attempts to condense various aryl aldehydes with 2,2,6,6-tetramethyl-4-piperidone led to the isolation of some 1,5-diaryl-1,4-pentadien-3-ones. The highest specificity for oral cancer cells was displayed by 2e and 2r. In the case of 2r, its selective toxicity exceeded that of doxorubicin and melphalan. The enones 2k, m, o have the highest SI values towards colon cancer and leukemic cells. Both 2e,r inhibited mitosis and increased the subG1 population (with a transient increase in G2/M phase cells). Slight activation of caspase-3, based on the cleavage of poly(ADP-ribose)polymerase (PARP) and procaspase 3, was detected.

10.
Molecules ; 26(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34885719

ABSTRACT

A novel series of 1-[3-{3,5-bis(benzylidene)-4-oxo-1-piperidino}-3-oxopropyl]-4-piperidone oximes 3a-h and related quaternary ammonium salts 4a-h were prepared as candidate antineoplastic agents. Evaluation against neoplastic Ca9-22, HSC-2 and HSC-4 cells revealed the compounds in series 3 and 4 to be potent cytotoxins with submicromolar CC50 values in virtually all cases. In contrast, the compounds were less cytocidal towards HGF, HPLF and HPC non-malignant cells revealing their tumour-selective toxicity. Quantitative structure-activity relationships revealed that, in general, both cytotoxic potency and selectivity index figures increased as the magnitude of the Hammett sigma values rose. In addition, 3a-h are cytotoxic towards a number of leukemic and colon cancer cells. 4b,c lowered the mitochondrial membrane potential in CEM cells, and 4d induced transient G2/M accumulation in Ca9-22 cells. Five compounds, namely 3c,d and 4c-e, were identified as lead molecules that have drug-like properties.


Subject(s)
Antineoplastic Agents/chemical synthesis , Colonic Neoplasms/drug therapy , Oximes/chemical synthesis , Quaternary Ammonium Compounds/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Oximes/chemistry , Oximes/pharmacology , Quantitative Structure-Activity Relationship , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology
11.
Int J Microbiol ; 2021: 5528786, 2021.
Article in English | MEDLINE | ID: mdl-34545287

ABSTRACT

BACKGROUND: Currently, a novel coronavirus found in 2019 known as SARS-CoV-2 is the etiological agent of the COVID-19 pandemic. Various parameters including clinical manifestations and molecular evaluation can affect the accuracy of diagnosis. This review aims to discuss the various clinical symptoms and molecular evaluation results in COVID-19 patients, to point out the importance of onset symptoms, type, and timing of the sampling, besides the methods that are used for detection of SARS-CoV-2. METHODS: A systematic literature review of current articles in the Web of Science, PubMed, Scopus, and EMBASE was conducted according to the PRISMA guideline. RESULTS: Of the 12946 patients evaluated in this investigation, 7643 were confirmed to be COVID-19 positive by molecular techniques, particularly the RT-PCR/qPCR combined technique (qRT-PCR). In most of the studies, all of the enrolled cases had 100% positive results for molecular evaluation. Among the COVID-19 patients who were identified as such by positive PCR results, most of them showed fever or cough as the primary clinical signs. Less common symptoms observed in clinically confirmed cases were hemoptysis, bloody sputum, mental disorders, and nasal congestion. The most common clinical samples for PCR-confirmed COVID-19 patients were obtained from throat, oropharyngeal, and nasopharyngeal swabs, while tears and conjunctival secretions seem to be the least common clinical samples for COVID-19 diagnosis among studies. Also, different conserved SARS-CoV-2 gene sequences could be targeted for qRT-PCR detection. The suggested molecular assay being used by most laboratories for the detection of SARS-CoV-2 is qRT-PCR. CONCLUSION: There is a worldwide concern on the COVID-19 pandemic and a lack of well-managed global control. Hence, it is crucial to update the molecular diagnostics protocols for handling the situation. This is possible by understanding the available advances in assays for the detection of the SARS-CoV-2 infection. Good sampling procedure and using samples with enough viral loads, also considering the onset symptoms, may reduce the qRT-PCR false-negative results in symptomatic COVID-19 patients. Selection of the most efficient primer-probe for target genes and samples containing enough viral loads to search for the existence of SARS-CoV-2 helps detecting the virus on time using qRT-PCR.

12.
Medicines (Basel) ; 8(6)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205029

ABSTRACT

A series of novel N2-acryloylhydrazides 1a-m and a related series of compounds 6a-c were prepared as potential chemostimulants. In general, these compounds are cytotoxic to human HCT 116 colon cancer cells, as well as human MCF-7 and MDA-MB-231 breast cancer cell lines. A representative compound N1-(3,4-dimethoxyphenylcarbonyl)-N2-acryloylhydrazine 1m sensitized HCT 116 cells to the potent antineoplastic agent 3,5-bis(benzylidene)-4-piperidone 2a, and also to 5-fluorouracil. A series of compounds was prepared that incorporated some of the molecular features of 2a and related compounds with various N2-acryloylhydrazides in series 1. These compounds are potent cytotoxins. Two modes of action of representative compounds are the lowering of mitochondrial membrane potential and increasing the concentration of reactive oxygen species.

13.
Curr Med Chem ; 28(13): 2453-2464, 2021.
Article in English | MEDLINE | ID: mdl-32744955

ABSTRACT

This review outlines the discovery and development of a novel series of 1-[4-2- aminoethoxy)phenylcarbonyl]-3,5-bis-(benzylidene)-4-piperidones (5-8) as potential drug candidates over the last 15 years in our laboratory. Many of these compounds demonstrate excellent cytotoxic properties and are often more potent than contemporary anticancer drugs. Two highly important features of many of these molecules are first, the greater tumour-selective toxicity and second, the ability of these molecules to act as modulators of multi-drug resistance. The modes of action of some of the potent compounds are by apoptosis induction, generation of reactive oxygen species, activation of certain caspases and affecting mitochondrial functions. These molecules also display promising antimalarial and antimycobacterial properties. In a short term toxicity study, these molecules are well tolerated in mice. Structure-activity relationships and a drug delivery system along with pharmacokinetic studies and metabolic stability of these compounds, have been presented. The positive characteristics associated with the series (5-8) warrant their further evaluations as candidate antineoplastic drug candidates.


Subject(s)
Antineoplastic Agents , Piperidones , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Resistance, Multiple , Mice , Piperidones/pharmacology , Structure-Activity Relationship
14.
Cancers (Basel) ; 12(6)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585896

ABSTRACT

Histones are the main structural proteins of eukaryotic chromatin. Histone acetylation/ deacetylation are the epigenetic mechanisms of the regulation of gene expression and are catalyzed by histone acetyltransferases (HAT) and histone deacetylases (HDAC). These epigenetic alterations of DNA structure influence the action of transcription factors which can induce or repress gene transcription. The HATs catalyze acetylation and the events related to gene transcription and are also responsible for transporting newly synthesized histones from the cytoplasm to the nucleus. The activity of HDACs is mainly involved in silencing gene expression and according to their specialized functions are divided into classes I, II, III and IV. The disturbance of the expression and mutations of HDAC genes causes the aberrant transcription of key genes regulating important cancer pathways such as cell proliferation, cell-cycle regulation and apoptosis. In view of their role in cancer pathways, HDACs are considered promising therapeutic targets and the development of HDAC inhibitors is a hot topic in the search for new anticancer drugs. The present review will focus on HDACs I, II and IV, the best known inhibitors and potential alternative inhibitors derived from natural and synthetic products which can be used to influence HDAC activity and the development of new cancer therapies.

15.
Bioorg Med Chem Lett ; 30(3): 126878, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31864797

ABSTRACT

A novel class of hybrid molecules 2a-o was designed as candidate antineoplastic agents from dichloroacetic acid which is a known inhibitor of pyruvate dehydrogenase kinase and a number of cytotoxic 3,5-bis(benzylidene)-4-piperidones 1. In general these new hybrid molecules are potent cytotoxins towards human HCT116 colon cancer cells. A number of lead molecules emerged having the IC50 values in the double digit nanomolar range. Most of these compounds are less toxic to human CRL1790 non-malignant colon cells and hence the selectivity index (SI) figures for most of the compounds are huge; in the case of 2c-g, m, n, the SI values are in excess of 100. Compounds 2g, 2j, 2m and 2n displayed >100-fold higher potency than the reference drug 5-FU. Quantitative structure-activity relationships revealed that the potencies of the compounds in series 2 increase as the magnitude of the Hammett σ and Taft σ* values rise. X-ray crystallographic of a representative compound 2c revealed various structural features which may influence cytotoxic potencies. Several representative compounds lowered the mitochondrial membrane potential and increased the production of reactive oxygen species in HCT116 cells. A minimal effect was noted in altering the percentage of cells in different phases of the cell cycle. Some futuredirections have been outlined for analog development.


Subject(s)
Antineoplastic Agents/chemistry , Dichloroacetic Acid/chemistry , Piperidones/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Membrane Potential, Mitochondrial/drug effects , Molecular Conformation , Quantitative Structure-Activity Relationship , Reactive Oxygen Species/metabolism
16.
Eur J Med Chem ; 183: 111687, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31539776

ABSTRACT

Conjugated α,ß-unsaturated ketones are very useful compounds associated with diverse medicinal properties. This review outlines α,ß-unsaturated ketones as candidate cytotoxic agents which affect mitochondrial function. Both naturally occurring compounds and synthetic chemicals have been discussed which exert their cytotoxic effects, at least in part, by acting on mitochondria. Biochemical differences between tumour mitochondria and this organelle in non-malignant cells have been exploited to investigate various compounds that can cause greater toxicity to neoplasms than normal cells. On a number of instances, correlations between the structures of various α,ß-unsaturated ketones and cytotoxic potencies have been observed. The aspiration is that this review will assist drug designers to create compounds which are significantly more toxic to neoplasms than normal tissues.


Subject(s)
Ketones/pharmacology , Mitochondria/drug effects , Neoplasms/drug therapy , Animals , Humans , Ketones/chemistry , Mitochondria/metabolism , Neoplasms/metabolism
17.
Med Chem ; 15(4): 430-438, 2019.
Article in English | MEDLINE | ID: mdl-30324886

ABSTRACT

BACKGROUND: Cancer continues to be the major health burden worldwide. There is an urgent need for the development of novel antineoplastic compounds to treat this devastating condition. Various alkylating anticancer drugs have been employed in the clinic for treating cancers. Unsaturated conjugated ketones are a group of alkylators which are of significant interest as potent antineoplastic agents. OBJECTIVE: The goal of this study is to discover unsaturated conjugated ketones which are novel potent cytotoxins displaying growth-inhibitory properties towards neoplasms and also to serve as cytotoxic warheads in drug development. METHODS: A variety of 3,5-bis (benzylidene)-4-piperidones 2a-n were synthesized and evaluated against a number of neoplastic cell lines. The short-term neurotoxicity of 2a-k, n was evaluated in mice by i.p. administration using doses level of 30, 100 and 300 mg/kg. Statistical correlations for determining structure-activity relationships were performed using an SPSS software. RESULTS: A number of compounds display cytotoxic potencies in the region of 10-7 to 10-8 M and some of the structural features contributing to the cytotoxicity were identified. Compounds 2a-d, 2h demonstrated substantially higher cytotoxic potencies compared to melphalan and 5- fluorouracil against a panel of leukemic and colon cancer cell lines. These lead cytotoxins comply with drug-likeness properties. In general, the antineoplastics 2 are well tolerated in mice using a short-term neurotoxicity screening. CONCLUSION: In general, this group of compounds comprises excellent cytotoxic agents, which warrant their further development as cytotoxic warheads.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Colonic Neoplasms/pathology , Ketones/chemistry , Ketones/pharmacology , Leukemia/pathology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Structure-Activity Relationship
18.
Cell Oncol (Dordr) ; 41(6): 623-636, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30088262

ABSTRACT

PURPOSE: Previously, compounds containing a piperidone structure have been shown to be highly cytotoxic to cancer cells. Recently, we found that the piperidone compound P2 exhibits a potent anti-neoplastic activity against human breast cancer-derived cells. Here, we aimed to evaluate two piperidone compounds, P1 and P2, for their potential anti-neoplastic activity against human leukemia/lymphoma-derived cells. METHODS: Cytotoxicity and apoptosis induction were evaluated using MTS, annexin V-FITC/PI and mitochondrial membrane potential polychromatic assays to confirm the mode of action of the piperidone compounds. The effects of compound P1 and P2 treatment on gene expression were assessed using AmpliSeq analysis and, subsequently, confirmed by RT-qPCR and Western blotting. RESULTS: We found that the two related piperidone compounds P1 and P2 selectively killed the leukemia/lymphoma cells tested at nanomolar concentrations through induction of the intrinsic apoptotic pathway, as demonstrated by mitochondrial depolarization and caspase-3 activation. AmpliSeq-based transcriptome analyses of the effects of compounds P1 and P2 on HL-60 acute leukemia cells revealed a differential expression of hundreds of genes, 358 of which were found to be affected by both. Additional pathway analyses revealed that a significant number of the common genes were related to the unfolded protein response, implying a possible role of the two compounds in the induction of proteotoxic stress. Subsequent analyses of the transcriptome data revealed that P1 and P2 induced similar gene expression alterations as other well-known proteasome inhibitors. Finally, we found that Noxa, an important mediator of the activity of proteasome inhibitors, was significantly upregulated at both the mRNA and protein levels, indicating a possible role in the cytotoxic mechanism induced by P1 and P2. CONCLUSIONS: Our data indicate that the cytotoxic activity of P1 and P2 on leukemia/lymphoma cells is mediated by proteasome inhibition, leading to activation of pro-apoptotic pathways.


Subject(s)
Apoptosis/drug effects , Leukemia/pathology , Lymphoma/pathology , Piperidones/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Cell Line, Tumor , Gene Expression Profiling , Gene Expression Regulation, Leukemic/drug effects , Gene Ontology , Humans , Inhibitory Concentration 50 , Molecular Weight , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Piperidones/chemistry , Polyubiquitin/metabolism , Reproducibility of Results , Signal Transduction/drug effects , Ubiquitinated Proteins/metabolism , Unfolded Protein Response/drug effects , Up-Regulation/drug effects
19.
Bioorg Med Chem Lett ; 27(16): 3669-3673, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28716495

ABSTRACT

This study aims at investigating the cytotoxicity and some of the modes of action of 3,5-bis(3-dimethylamino-4-hydroxybenzylidene)-4-piperidone trihydrochloride 3 and two related compounds 2 (which lacks the dimethylaminomethyl groups) and 4 (which has an additional dimethylaminoethyl substituent in both aryl rings) in order to ascertain the contribution of dimethylaminoethyl substituent to bioactivity. The bioactivities of 2-4 were compared with curcumin 5. Both 2 and 3 displayed submicromolar GI50 values towards HCT-116 cells and were significantly more potent than 4, 5 and 5-fluorouracil (5-FU). All of the compounds displayed greater toxicity towards HCT-116 cells than human CRL-1790 non-malignant colon cells. In HCT-116 cells, the compounds 2, 3 and 5 increased the ratio of oxidised to reduced glutathione and destabilized the mitochondrial membrane potential. Both 2 and 5 produced an increase in mitochondrial superoxide and a burst in intracellular reactive oxygen species in HCT 116 cells. In addition, 2 and 4 stimulated respiration in rat liver mitochondria while 2 and 5 induced mitochondrial swelling. The results suggest that 2 and 5 cause oxidation or cross-linking of the thiols which control the mitochondrial permeability transition.


Subject(s)
Apoptosis/drug effects , Glutathione/chemistry , Mitochondria/metabolism , Piperidones/chemistry , Piperidones/pharmacology , Cell Line , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Curcumin/pharmacology , Glutathione/metabolism , HCT116 Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Oxidation-Reduction/drug effects , Piperidones/chemical synthesis , Reactive Oxygen Species/metabolism , Superoxides/metabolism
20.
PPAR Res ; 2017: 6397836, 2017.
Article in English | MEDLINE | ID: mdl-28321247

ABSTRACT

Peroxisome proliferator-activated receptor gamma (PPARγ) is a potential target for the treatment of several disorders. In view of several FDA approved kinase inhibitors, in the current study, we have investigated the interaction of selected kinase inhibitors with PPARγ using computational modeling, docking, and molecular dynamics simulations (MDS). The docked conformations and MDS studies suggest that the selected KIs interact with PPARγ in the ligand binding domain (LBD) with high positive predictive values. Hence, we have for the first time shown the plausible binding of KIs in the PPARγ ligand binding site. The results obtained from these in silico investigations warrant further evaluation of kinase inhibitors as PPARγ ligands in vitro and in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...