Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Carbohydr Res ; 535: 108988, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38048747

ABSTRACT

Naturally occurring glycans are often found in a multivalent presentation. Cell surface receptors that recognize these displays may form clusters, which can lead to signalling or endocytosis. One of the challenges in generating synthetic displays of multivalent carbohydrates is providing high valency as well as access to heterofunctional conjugates to allow attachment of multiple antigens or payloads. We designed a strategy based on a set of bifunctional linkers to generate a heterobifunctional multivalent display of two carbohydrate antigens to bind BCR and CD22 with four and twelve antigen copies, respectively. We confirmed that the conjugates were able to engage both CD22 and BCR on cells by observing receptor clustering. The strategy is modular and would allow for alternative carbohydrate antigens to be attached bearing amine and alkyne groups and should be of interest for the development of immunomodulators and vaccines.


Subject(s)
ABO Blood-Group System , Glycoconjugates , Carbohydrates , Polysaccharides
2.
Nat Commun ; 14(1): 2327, 2023 04 22.
Article in English | MEDLINE | ID: mdl-37087495

ABSTRACT

Immunomodulatory Siglecs are controlled by their glycoprotein and glycolipid ligands. Siglec-glycolipid interactions are often studied outside the context of a lipid bilayer, missing the complex behaviors of glycolipids in a membrane. Through optimizing a liposomal formulation to dissect Siglec-glycolipid interactions, it is shown that Siglec-6 can recognize glycolipids independent of its canonical binding pocket, suggesting that Siglec-6 possesses a secondary binding pocket tailored for recognizing glycolipids in a bilayer. A panel of synthetic neoglycolipids is used to probe the specificity of this glycolipid binding pocket on Siglec-6, leading to the development of a neoglycolipid with higher avidity for Siglec-6 compared to natural glycolipids. This neoglycolipid facilitates the delivery of liposomes to Siglec-6 on human mast cells, memory B-cells and placental syncytiotrophoblasts. A physiological relevance for glycolipid recognition by Siglec-6 is revealed for the binding and internalization of extracellular vesicles. These results demonstrate a unique and physiologically relevant ability of Siglec-6 to recognize glycolipids in a membrane.


Subject(s)
Extracellular Vesicles , Sialic Acid Binding Immunoglobulin-like Lectins , Female , Humans , Pregnancy , Extracellular Vesicles/metabolism , Glycolipids/chemistry , Glycolipids/metabolism , Liposomes , Mast Cells/metabolism , Memory B Cells/metabolism , Placenta/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
3.
RSC Chem Biol ; 3(10): 1260-1275, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36320887

ABSTRACT

Synthetic glycoconjugates are used in the development of vaccines and the design of inhibitors for glycan-protein interactions. The in vivo persistence of synthetic glycoconjugates is an important factor in their efficacy, especially when prolonged interactions with specific cell types may be required. In this study, we applied a strategy for non-covalent association of an active compound with serum proteins for extension of glycoconjugate half-life in serum. The small molecule, AG10, has previously been used to extend the half-life of small molecules through its high affinity for transthyretin (TTR), a serum protein. Using a tetravalent polyethylene glycol (PEG)-based scaffold we developed a synthetic strategy for glycoconjugates that allowed for controlled addition of multiple tags, such as a TTR affinity tag or fluorophore. We designed a version of AG10 modified at the pyrazole core, named GD10, amenable to our conjugation strategy and introduced to glycoconjugates using a tri-functional linker. This approach allowed for attachment of GD10 and fluorophore tags, as well as carbohydrate antigens. We then tested the influence of the GD10 tag on glycoconjugate half-life in vivo using a mouse model. Our results suggest that the combination of the GD10 tag and the PEG scaffold extended the half-life of glycoconjugates by as much as 10-fold when compared to proteins of similar molecular weight. The GD10 tag was able to extend the half-life of similar glycoconjugates by as much as 2-fold. We observed a role for the terminal saccharide residue of the carbohydrate antigen and confirmed that conjugates were able to penetrate multiple compartments in vivo including bone marrow, lymph nodes, and other organs. The introduction of the GD10 tag did not obstruct the ability of conjugates to interact with lectin receptors. We conclude that serum protein binders can be used to extend the persistence of glycoconjugates in vivo.

4.
J Allergy Clin Immunol ; 150(6): 1476-1485.e4, 2022 12.
Article in English | MEDLINE | ID: mdl-35839842

ABSTRACT

BACKGROUND: Circulating IgE and subsequent severe allergic reactions to peanut are sustained and propagated by recall of peanut allergen-specific memory B cells. OBJECTIVES: This study aimed to determine whether targeting mouse and human CD22 on peanut-specific memory B cells induces tolerance to peanut allergens. METHODS: Siglec-engaging tolerance-inducing antigenic liposomes (STALs) codisplaying peanut allergens (Ara h 1, Ara h 2, or Ara h 3) and high-affinity CD22 ligand (CD22L-STALs) were employed in various mouse models (BALB/cJ, C57BL/6, human CD22 transgenic, and NSG) of peanut allergy. To investigate memory B cells, a conferred memory model was used in which splenocytes from peanut-sensitized mice were transferred into naive animals. Reconstituted mice received either CD22L-STALs or an immunogenic liposome control, followed by a peanut allergen boost and later a challenge with individual peanut allergens. To assess the effects of CD22L-STALs on human B cells, PBMCs were injected into NSG mice, followed by administration of human CD22L-STALs (hCD22L-STALs) and later a whole peanut extract boost. Blood was collected to quantify WPE- and Ara h 1-, 2-, and 3-specific immunoglobulins. RESULTS: Mouse CD22L-STALs (mCD22L-STALs) significantly suppressed systemic memory to Ara h 1, Ara h 2, and Ara h 3 in BALB/cJ and C57BL/6 mice, as demonstrated by reduced allergen-specific IgE, IgG1, and anaphylaxis on challenge. Importantly, 2 doses of mCD22L-STALs led to prolonged tolerance for at least 3 months. hCD22L-STALs displayed similar suppression in mice expressing human CD22 on B cells. Finally, human B cells were tolerized in vivo in NSG mice by hCD22L-STALs. CONCLUSIONS: Antigen-specific exploitation of CD22 on memory B cells can induce systemic immune tolerance.


Subject(s)
Allergens , Arachis , Humans , Mice , Animals , Mice, Inbred C57BL , Memory B Cells , Immune Tolerance , Sialic Acid Binding Ig-like Lectin 2
5.
J Neuroinflammation ; 19(1): 9, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991625

ABSTRACT

BACKGROUND: Gangliosides are glycosphingolipids highly enriched in the brain, with important roles in cell signaling, cell-to-cell communication, and immunomodulation. Genetic defects in the ganglioside biosynthetic pathway result in severe neurodegenerative diseases, while a partial decrease in the levels of specific gangliosides was reported in Parkinson's disease and Huntington's disease. In models of both diseases and other conditions, administration of GM1-one of the most abundant gangliosides in the brain-provides neuroprotection. Most studies have focused on the direct neuroprotective effects of gangliosides on neurons, but their role in other brain cells, in particular microglia, is not known. In this study we investigated the effects of exogenous ganglioside administration and modulation of endogenous ganglioside levels on the response of microglia to inflammatory stimuli, which often contributes to initiation or exacerbation of neurodegeneration. METHODS: In vitro studies were performed using BV2 cells, mouse, rat, and human primary microglia cultures. Modulation of microglial ganglioside levels was achieved by administration of exogenous gangliosides, or by treatment with GENZ-123346 and L-t-PDMP, an inhibitor and an activator of glycolipid biosynthesis, respectively. Response of microglia to inflammatory stimuli (LPS, IL-1ß, phagocytosis of latex beads) was measured by analysis of gene expression and/or secretion of pro-inflammatory cytokines. The effects of GM1 administration on microglia activation were also assessed in vivo in C57Bl/6 mice, following intraperitoneal injection of LPS. RESULTS: GM1 decreased inflammatory microglia responses in vitro and in vivo, even when administered after microglia activation. These anti-inflammatory effects depended on the presence of the sialic acid residue in the GM1 glycan headgroup and the presence of a lipid tail. Other gangliosides shared similar anti-inflammatory effects in in vitro models, including GD3, GD1a, GD1b, and GT1b. Conversely, GM3 and GQ1b displayed pro-inflammatory activity. The anti-inflammatory effects of GM1 and other gangliosides were partially reproduced by increasing endogenous ganglioside levels with L-t-PDMP, whereas inhibition of glycolipid biosynthesis exacerbated microglial activation in response to LPS stimulation. CONCLUSIONS: Our data suggest that gangliosides are important modulators of microglia inflammatory responses and reveal that administration of GM1 and other complex gangliosides exerts anti-inflammatory effects on microglia that could be exploited therapeutically.


Subject(s)
Anti-Inflammatory Agents/pharmacology , G(M1) Ganglioside/pharmacology , Inflammation/pathology , Microglia/drug effects , Animals , Cells, Cultured , Dioxanes/pharmacology , Humans , Inflammation/metabolism , Interleukin-1beta/pharmacology , Lipopolysaccharides/pharmacology , Mice , Microglia/metabolism , Microglia/pathology , Phagocytosis/drug effects , Pyrrolidines/pharmacology , Rats
6.
Nat Chem Biol ; 18(1): 81-90, 2022 01.
Article in English | MEDLINE | ID: mdl-34754101

ABSTRACT

Emerging evidence suggests that host glycans influence severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we reveal that the receptor-binding domain (RBD) of the spike (S) protein on SARS-CoV-2 recognizes oligosaccharides containing sialic acid (Sia), with preference for monosialylated gangliosides. Gangliosides embedded within an artificial membrane also bind to the RBD. The monomeric affinities (Kd = 100-200 µM) of gangliosides for the RBD are similar to another negatively charged glycan ligand of the RBD proposed as a viral co-receptor, heparan sulfate (HS) dp2-dp6 oligosaccharides. RBD binding and infection of SARS-CoV-2 pseudotyped lentivirus to angiotensin-converting enzyme 2 (ACE2)-expressing cells is decreased following depletion of cell surface Sia levels using three approaches: sialyltransferase (ST) inhibition, genetic knockout of Sia biosynthesis, or neuraminidase treatment. These effects on RBD binding and both pseudotyped and authentic SARS-CoV-2 viral entry are recapitulated with pharmacological or genetic disruption of glycolipid biosynthesis. Together, these results suggest that sialylated glycans, specifically glycolipids, facilitate viral entry of SARS-CoV-2.


Subject(s)
Glycolipids/metabolism , SARS-CoV-2/metabolism , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , Humans
7.
ACS Chem Biol ; 16(11): 2673-2689, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34661385

ABSTRACT

The immunomodulatory family of Siglecs recognizes sialic acid-containing glycans as "self", which is exploited in cancer for immune evasion. The biochemical nature of Siglec ligands remains incompletely understood, with emerging evidence suggesting the importance of carbohydrate sulfation. Here, we investigate how specific sulfate modifications affect Siglec ligands by overexpressing eight carbohydrate sulfotransferases (CHSTs) in five cell lines. Overexpression of three CHSTs─CHST1, CHST2, or CHST4─significantly enhance the binding of numerous Siglecs. Unexpectedly, two other CHSTs (Gal3ST2 and Gal3ST3) diminish Siglec binding, suggesting a new mode to modulate Siglec ligands via sulfation. Results are cell type dependent, indicating that the context in which sulfated glycans are presented is important. Moreover, a pharmacological blockade of N- and O-glycan maturation reveals a cell-type-specific pattern of importance for either class of glycan. Production of a highly homogeneous Siglec-3 (CD33) fragment enabled a mass-spectrometry-based binding assay to determine ≥8-fold and ≥2-fold enhanced affinity for Neu5Acα2-3(6-O-sulfo)Galß1-4GlcNAc and Neu5Acα2-3Galß1-4(6-O-sulfo)GlcNAc, respectively, over Neu5Acα2-3Galß1-4GlcNAc. CD33 shows significant additivity in affinity (≥28-fold) for the disulfated ligand, Neu5Acα2-3(6-O-sulfo)Galß1-4(6-O-sulfo)GlcNAc. Moreover, joint overexpression of CHST1 with CHST2 in cells greatly enhanced the binding of CD33 and several other Siglecs. Finally, we reveal that CHST1 is upregulated in numerous cancers, correlating with poorer survival rates and sodium chlorate sensitivity for the binding of Siglecs to cancer cell lines. These results provide new insights into carbohydrate sulfation as a general mechanism for tuning Siglec ligands on cells, including in cancer.


Subject(s)
Carbohydrate Metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sulfates/metabolism , Cell Line , Down-Regulation , Humans , Ligands , Mass Spectrometry , N-Acetylneuraminic Acid/metabolism , Neoplasms/metabolism , Protein Binding , Protein Processing, Post-Translational , Up-Regulation
8.
J Control Release ; 338: 680-693, 2021 10 10.
Article in English | MEDLINE | ID: mdl-34517042

ABSTRACT

CD33 is an immunomodulatory receptor expressed by microglia and genetically linked to Alzheimer's disease (AD) susceptibility. While antibodies targeting CD33 have entered clinical trials to treat neurodegeneration, it is unknown whether the glycan-binding properties of CD33 can be exploited to modulate microglia. Here, we use liposomes that multivalently display glycan ligands of CD33 (CD33L liposomes) to engage CD33. We find that CD33L liposomes increase phagocytosis of cultured monocytic cells and microglia in a CD33-dependent manner. Enhanced phagocytosis strongly correlates with loss of CD33 from the cell surface and internalization of liposomes. Increased phagocytosis by treatment with CD33L liposomes is dependent on a key intracellular signaling motif on CD33 as well as the glycan-binding ability of CD33. These effects are specific to trans engagement of CD33 by CD33L liposomes, as cis engagement through insertion of lipid-linked CD33L into cells produces the opposite effect on phagocytosis. Moreover, intracerebroventricular injection of CD33L liposomes into transgenic mice expressing human CD33 in the microglial cell lineage enhances phagocytosis of microglia in a CD33-dependent manner. These results demonstrate that multivalent engagement of CD33 with glycan ligands can modulate microglial cell function.


Subject(s)
Alzheimer Disease , Microglia , Alzheimer Disease/drug therapy , Animals , Ligands , Liposomes , Mice , Phagocytosis , Polysaccharides
9.
Nat Commun ; 11(1): 5091, 2020 10 09.
Article in English | MEDLINE | ID: mdl-33037195

ABSTRACT

Sialic acid-binding immunoglobulin-type lectins (Siglecs) are immunomodulatory receptors that are regulated by their glycan ligands. The connections between Siglecs and human disease motivate improved methods to detect Siglec ligands. Here, we describe a new versatile set of Siglec-Fc proteins for glycan ligand detection. Enhanced sensitivity and selectivity are enabled through multimerization and avoiding Fc receptors, respectively. Using these Siglec-Fc proteins, Siglec ligands are systematically profiled on healthy and cancerous cells and tissues, revealing many unique patterns. Additional features enable the production of small, homogenous Siglec fragments and development of a quantitative ligand-binding mass spectrometry assay. Using this assay, the ligand specificities of several Siglecs are clarified. For CD33 (Siglec-3), we demonstrate that it recognizes both α2-3 and α2-6 sialosides in solution and on cells, which has implications for its link to Alzheimer's disease susceptibility. These soluble Siglecs reveal the abundance of their glycan ligands on host cells as self-associated molecular patterns.


Subject(s)
Polysaccharides/analysis , Sialic Acid Binding Immunoglobulin-like Lectins/chemistry , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Breast Neoplasms/metabolism , CHO Cells , Cricetulus , Female , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , K562 Cells , Mass Spectrometry , Polysaccharides/metabolism , Sialic Acid Binding Ig-like Lectin 3/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/isolation & purification , Sialic Acids/metabolism , Sialyltransferases/genetics , Sialyltransferases/metabolism , Spleen/cytology , Spleen/metabolism , Streptavidin/metabolism
10.
Chem Rev ; 118(17): 8188-8241, 2018 09 12.
Article in English | MEDLINE | ID: mdl-29979587

ABSTRACT

The plasma membrane of cells contains a diverse array of lipids that provide important structural and biological features. Glycolipids are typically a minor component of the cell membrane and consist primarily of glycosphingolipids (GSLs). GSLs in vertebrates contain a multifarious assortment of glycan headgroups, which can be important to biological functions based on lipid-lipid and lipid-protein interactions. The design of probes to study these complex targets requires advanced synthetic methodologies. In this Review, we will discuss recent advances in chemical and chemoenzymatic synthesis of GSLs in conjunction with the use of these approaches to design new probes. Examples using either chemical or enzymatic semisynthesis methods starting from isolated GSLs will also be reviewed. Focusing primarily on vertebrate glycolipids, we will highlight examples of radionuclide, fluorophore, photoresponsive, and bioorthogonal tagged GSL probes.


Subject(s)
Chemistry Techniques, Synthetic/methods , Glycosphingolipids/chemical synthesis , Molecular Probes/chemical synthesis , Carbohydrate Conformation , Glycoside Hydrolases/chemistry , Glycosphingolipids/chemistry , Glycosylation , Glycosyltransferases/chemistry , Molecular Probes/chemistry
11.
Bioconjug Chem ; 29(2): 343-362, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29237123

ABSTRACT

The design and synthesis of multivalent ligands displaying complex oligosaccharides is necessary for the development of therapeutics, diagnostics, and research tools. Here, we report an efficient conjugation strategy to prepare complex glycoconjugates with 4 copies of 1 or 2 separate glycan epitopes, providing 4-8 carbohydrate residues on a tetravalent poly(ethylene glycol) scaffold. This strategy provides complex glycoconjugates that approach the size of glycoproteins (15-18 kDa) while remaining well-defined. The synthetic strategy makes use of three orthogonal functional groups, including a reactive N-hydroxysuccinimide (NHS)-ester moiety on the linker to install the first carbohydrate epitope via reaction with an amine. A masked amine functionality on the linker is revealed after the removal of a fluorenylmethyloxycarbonyl (Fmoc)-protecting group, allowing the attachment to the NHS-activated poly(ethylene glycol) (PEG) scaffold. An azide group in the linker was then used to incorporate the second carbohydrate epitope via catalyzed alkyne-azide cycloaddition. Using a known tetravalent PEG scaffold (PDI, 1.025), we prepared homofunctional glycoconjugates that display four copies of lactose and the A-type II or the B-type II human blood group antigens. Using our trifunctional linker, we expanded this strategy to produce heterofunctional conjugates with four copies of two separate glycan epitopes. These heterofunctional conjugates included Neu5Ac, 3'-sialyllactose, or 6'-sialyllactose as a second antigen. Using an alternative strategy, we generated heterofunctional conjugates with three copies of the glycan epitope and one fluorescent group (on average) using a sequential dual-amine coupling strategy. These conjugation strategies should be easily generalized for conjugation of other complex glycans. We demonstrate that the glycan epitopes of heterofunctional conjugates engage and cluster target B-cell receptors and CD22 receptors on B cells, supporting the application of these reagents for investigating cellular response to carbohydrate antigens of the ABO blood group system.


Subject(s)
Blood Group Antigens/chemistry , Chemistry Techniques, Synthetic/methods , Glycoconjugates/chemistry , Glycoproteins/chemistry , Polysaccharides/chemistry , Animals , Azides/chemical synthesis , Azides/chemistry , Cell Line , Glycoconjugates/chemical synthesis , Glycoproteins/chemical synthesis , Humans , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Polysaccharides/chemical synthesis , Succinimides/chemical synthesis , Succinimides/chemistry
12.
Chem Rev ; 117(15): 9839-9873, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28682060

ABSTRACT

Among other classes of biomolecules, carbohydrates and glycoconjugates are widely involved in numerous biological functions. In addition to addressing the related synthetic challenges, glycochemists have invested intense efforts in providing access to structures that can be used to study, activate, or inhibit these biological processes. Over the past few decades, aminooxylated carbohydrates have been found to be key building blocks for achieving these goals. This review provides the first in-depth overview covering several aspects related to the syntheses and applications of aminooxylated carbohydrates. After a brief introduction to oxime bonds and their relative stabilities compared to related C═N functions, synthetic aspects of oxime ligation and methodologies for introducing the aminooxy functionality onto both glycofuranosyls and glycopyranosyls are described. The subsequent section focuses on biological applications involving aminooxylated carbohydrates as components for the construcion of diverse architectures. Mimetics of natural structures represent useful tools for better understanding the features that drive carbohydrate-receptor interaction, their biological output and they also represent interesting structures with improved stability and tunable properties. In the next section, multivalent structures such as glycoclusters and glycodendrimers obtained through oxime ligation are described in terms of synthetic design and their biological applications such as immunomodulators. The second-to-last section discusses miscellaneous applications of oxime-based glycoconjugates, such as enantioselective catalysis and glycosylated oligonucleotides, and conclusions and perspectives are provided in the last section.


Subject(s)
Carbohydrates/chemistry , Carbohydrates/chemical synthesis , Glycoproteins/chemistry , Oligonucleotides/chemistry , Stereoisomerism
13.
ChemistryOpen ; 5(5): 477-484, 2016 10.
Article in English | MEDLINE | ID: mdl-27777841

ABSTRACT

The synthesis of heteroglycoclusters (hGCs) is being subjected to rising interest, owing to their potential applications in glycobiology. In this paper, we report an efficient and straightforward convergent protocol based on orthogonal chemoselective ligations to prepare structurally well-defined cyclopeptide-based homo- and heterovalent glycoconjugates displaying 5-N-acetyl-neuraminic acid (Neu5Ac), galactose (Gal), and/or N-acetyl glucosamine (GlcNAc). We first used copper-catalyzed azide-alkyne cycloaddition and/or thiol-ene coupling to conjugate propargylated α-sialic acid 3, ß-GlcNAc thiol 5, and ß-Gal thiol 6 onto cyclopeptide scaffolds 7-9 to prepare tetravalent homoglycoclusters (10-12) and hGCs (13-14) with 2:2 combinations of sugars. In addition, we have demonstrated that 1,2-diethoxycyclobutene-3,4-dione can be used as a bivalent linker to prepare various octavalent hGCs (16, 19, and 20) in a controlled manner from these tetravalent structures.

14.
Org Biomol Chem ; 13(47): 11529-38, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26464062

ABSTRACT

The synthesis of glycodendrimers remains a challenging task. In this paper we propose a protocol based on both oxime ligation (OL) to combine cyclopeptide repeating units as the dendritic core and the copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) to conjugate peripheral α and ß propargylated GalNAc. By contrast with the oxime-based iterative protocol reported in our group, our current strategy can be used in both divergent and convergent routes with similar efficiency and the resulting hexadecavalent glycodendrimers can be easily characterized compared to oxime-linked analogues. A series of glycoconjugates displaying four or sixteen copies of both α and ß GalNAc have been prepared and their ability to inhibit the adhesion of the soybean agglutinin (SBA) lectin to polymeric-GalNAc immobilized on microtiter plates has been evaluated. As was anticipated, the higher inhibitory effect (IC50 = 0.46 µM) was measured with the structure displaying αGalNAc with the higher valency (compound 13), which demonstrates that the binding properties of these glycoconjugates are strongly dependent on the orientation and distribution of the GalNAc units.


Subject(s)
Acetylgalactosamine/chemistry , Dendrimers/chemistry , Glycoconjugates/chemistry , Peptides, Cyclic/chemistry , Acetylgalactosamine/chemical synthesis , Acetylgalactosamine/pharmacology , Adsorption/drug effects , Alkynes/chemistry , Azides/chemistry , Crystallography, X-Ray , Cycloaddition Reaction , Dendrimers/chemical synthesis , Dendrimers/pharmacology , Glycoconjugates/chemical synthesis , Glycoconjugates/pharmacology , Models, Molecular , Oximes/chemistry , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacology , Plant Lectins/chemistry , Soybean Proteins/chemistry
15.
Chem Commun (Camb) ; 51(25): 5436-9, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25164147

ABSTRACT

Well-defined heterofunctionalized glycosylated scaffolds with unprecedented molecular combinations have been prepared using up to five different bioorthogonal ligations. This approach opens up chemical access to a diversity of biomolecular structures with high biological potential.


Subject(s)
Carbohydrates/chemical synthesis , Carbohydrates/chemistry , Glycosylation , Humans , Molecular Structure
16.
Carbohydr Res ; 405: 13-22, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25498201

ABSTRACT

Cyclopeptides have recently emerged as attractive molecular scaffolds for the multivalent presentation of carbohydrates in a well-defined constrained spatial orientation. This mini-review describes the last advances on the synthesis and the biological applications of these particular structures, going from low molecular weight glycoclusters to fully synthetic nano-sized glycodendrimers.


Subject(s)
Glycopeptides/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Peptides, Cyclic/chemistry , Glycopeptides/chemical synthesis , Humans
17.
Beilstein J Org Chem ; 10: 1557-63, 2014.
Article in English | MEDLINE | ID: mdl-25161711

ABSTRACT

We describe the first one-pot orthogonal strategy to prepare well-defined cyclopeptide-based heteroglycoclusters (hGCs) from glycosyl thiols. Both thiol-chloroactetyl coupling (TCC) and thiol-ene coupling (TEC) have been used to decorate cyclopeptides regioselectively with diverse combination of sugars. We demonstrate that the reaction sequence starting with TCC can be performed one-pot whereas the reverse sequence requires a purification step after the TEC reaction. The versatility of this orthogonal strategy has been demonstrated through the synthesis of diverse hGCs displaying alternating binary combinations of α-D-Man or ß-D-GlcNAc, thus providing rapid access to attractive heteroglycosylated platforms for diverse biological applications.

18.
Carbohydr Res ; 393: 9-14, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24879012

ABSTRACT

This paper describes an efficient oxime ligation strategy to prepare multivalent conjugates wherein peptides alone or in combination with carbohydrate or oxime groups were coupled to a cyclopeptide scaffold. To demonstrate the versatility of this approach, two classes of conjugates have been prepared. In one class, we attached two or four peptide sequences to the cyclopeptide core together with free oxime groups, while the second class contains an additional substitution with four or two monosaccharides. The well-defined structure of these conjugates was confirmed by high-resolution mass spectrometry.


Subject(s)
Carbohydrates/chemistry , Glycoconjugates/chemistry , Glycoconjugates/chemical synthesis , Oximes/chemistry , Peptides/chemistry , Models, Molecular , Molecular Conformation , Peptides, Cyclic/chemistry
19.
Chem Commun (Camb) ; 50(62): 8554-7, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-24955433

ABSTRACT

Synthesis of amphiphilic, cyclic di- and tetrasaccharides, which incorporate a methylene moiety at the inter-glycosidic bond, is reported. The amphiphilic properties of the new cyclic tetrasaccharide host were identified through assessing the solubilities of guests in aqueous and in organic solvents. The glycosidic bond stability of the cyclic tetrasaccharide under aqueous acidic condition was also verified.

20.
J Org Chem ; 77(5): 2185-91, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22283453

ABSTRACT

A method to convert 2-hydroxy glycal ester to the corresponding 2-deoxy-2-C-alkyl glycal in a facile manner, through key reactions including (i) C-allylation at C-1, (ii) Wittig reaction, and (iii) Cope rearrangement of a 1,5-diene derivative, is reported. The α-anomer of the 1,5-diene derivative underwent Cope rearrangement to afford 2-deoxy-2-C-glycal derivative, whereas the ß-anomer was found to be unreactive. Employing this sequence, 3,4,6-tri-O-benzyl-2-O-acetyl-1,5-anhydro-d-arabino-hex-1-enitol was transformed to 3,4,6-tri-O-benzyl-2-deoxy-2-C-alkyl-1,5-anhydro-D-arabino-hex-1-enitol. 2-Deoxy-2-C-alkyl glycal derivative is a suitable glycosyl donor to prepare 2-deoxy-2-C-alkyl glycosides, mediated through haloglycosylation and a subsequent dehalogenation. A number of 2-deoxy-2-C-alkyl glycosides, with both glycosyl and nonglycosyl moieties at the reducing end, are thus prepared from the glycal.


Subject(s)
Esters/chemistry , Glycosides/chemistry , Glycosides/chemical synthesis , Molecular Conformation , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL