Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 248: 108132, 2024 May.
Article in English | MEDLINE | ID: mdl-38503071

ABSTRACT

BACKGROUND AND OBJECTIVE: Incidence of paediatric anterior cruciate ligament (ACL) rupture has increased substantially over recent decades. Following ACL rupture, ACL reconstruction (ACLR) surgery is typically performed to restore passive knee stability. This surgery involves replacing the failed ACL with a graft, however, surgeons must select from range of surgical parameters (e.g., type, size, insertion, and pre-tension) with no robust evidence guiding these decisions. This study presents a systemmatic computational approach to study effects of surgical parameter variation on kinematics of paediatric knees. METHODS: This study used sequentially-linked neuromusculoskeletal (NMSK) finite element (FE) models of three paediatric knees to estimate the: (i) sensitivity of post-operative knee kinematics to four surgical parameters (type, size, insertion, and pre-tension) through multi-input multi-output sensitivity analysis; (ii) influence of motion and loading conditions throughout stance phase of walking gait on sensitivity indices; and (iii) influence of subject-specific anatomy (i.e., knee size) on sensitivivty indices. A previously validated FE model of the intact knee for each subject served as a reference against which ACLR knee kinematics were compared. RESULTS: Sensitivity analyses revealed significant influences of surgical parameters on ACLR knee kinematics, albeit without discernible trend favouring any one parameter. Graft size and pre-tension were primary drivers of variation in knee translations and rotations, however, their effects fluctuated across stance indicating motion and loading conditions affect system sensitivity to surgical parameters. Importantly, the sensitivity of knee kinematics to surgical parameter varied across subjects, indicating geometry (i.e., knee size) influenced system sensitivity. Notably, alterations in graft parameters yielded substantial effects on kinematics (normalized root-mean-square-error > 10 %) compared to intact knee models, indicating surgical parameters vary post-operative knee kinematics. CONCLUSIONS: Overall, this initial study highlights the importance of surgical parameter selection on post-operative kinematics in the paediatric ACLR knee, and provides evidence of the need for personalized surgical planning to ultimately enhance patient outcomes.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Humans , Child , Finite Element Analysis , Biomechanical Phenomena , Range of Motion, Articular , Knee Joint/surgery , Anterior Cruciate Ligament Injuries/surgery
2.
Proc Inst Mech Eng H ; 237(5): 619-627, 2023 May.
Article in English | MEDLINE | ID: mdl-36939175

ABSTRACT

Periodontal ligament (PDL) plays a crucial role in transferring load from tooth to its adjacent bone, and its role is more pronounced in case of trauma, due to its shock-absorbing character, which has not been fully understood yet. Different constitutive models have correlated mechanical function of PDL with its anisotropic, inhomogeneous, non-linear elastic nature, and it was variably modeled using Finite Element (FE) simulations of dental trauma. Furthermore, since capturing accurate dimension of PDL is difficult, various thicknesses were considered for PDL in FE reconstruction process. In this study, the sensitivity of FE analyses to variation in mechanical properties, including a large range of elastic properties for a linear elastic model, also a hyper-elastic material model, and various thicknesses of PDL was investigated by developing a CT-based FE model of tooth-PDL-bone complex. Results of this study highlighted the crucial role of PDL in absorption and dissipation of energy, as well as in stress distribution within alveolar bone during dental trauma. It was observed that as Young's modulus of PDL decreases and its thickness increases, its shock-absorbing capacity would be escalated. Moreover, it was found that inclusion of PDL reduces the maximum von Mises stress exerted on the alveolar bone by about 60% in some areas, compared to the case in which the PDL is absent. Results of this work underscore the need of presenting comprehensive constitutive models to describe mechanical behavior of PDL, with the goal of understanding the behavior of a tooth-PDL-bone complex in pathological conditions, such as trauma.


Subject(s)
Periodontal Ligament , Tooth , Stress, Mechanical , Biomechanical Phenomena , Bone and Bones , Finite Element Analysis , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...