Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 106(2): 153-169, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31978331

ABSTRACT

Cilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs and IDAs). Defects in ODAs and IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. PCD mutations in assembly factors have been shown to cause a combined ODA-IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the absence of only IDAs in respiratory cilia. Analyses of both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach revealed an IDA defect restricted to a subset of single-headed IDAs that are different in flagella and cilia, whereas TTC12 depletion in the ciliate Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella.


Subject(s)
Cilia/pathology , Ciliary Motility Disorders/etiology , Dyneins/metabolism , Flagella/pathology , Mutation , Proteins/genetics , Sperm Tail/pathology , Adult , Axoneme , Child , Cilia/metabolism , Ciliary Motility Disorders/pathology , Dyneins/genetics , Female , Flagella/metabolism , Homozygote , Humans , Infertility, Male/etiology , Infertility, Male/pathology , Male , Middle Aged , Pedigree , Phenotype , Sperm Motility , Sperm Tail/metabolism , Young Adult
2.
J Med Genet ; 57(4): 237-244, 2020 04.
Article in English | MEDLINE | ID: mdl-31772028

ABSTRACT

BACKGROUND: Primary ciliary dyskinesia (PCD) is a rare genetic disorder resulting in abnormal ciliary motility/structure, extremely heterogeneous at genetic and ultrastructural levels. We aimed, in light of extensive genotyping, to identify specific and quantitative ciliary beating anomalies, according to the ultrastructural phenotype. METHODS: We prospectively included 75 patients with PCD exhibiting the main five ultrastructural phenotypes (n=15/group), screened all corresponding PCD genes and measured quantitative beating parameters by high-speed video-microscopy (HSV). RESULTS: Sixty-eight (91%) patients carried biallelic mutations. Combined outer/inner dynein arms (ODA/IDA) defect induces total ciliary immotility, regardless of the gene involved. ODA defect induces a residual beating with dramatically low ciliary beat frequency (CBF) related to increased recovery stroke and pause durations, especially in case of DNAI1 mutations. IDA defect with microtubular disorganisation induces a low percentage of beating cilia with decreased beating angle and, in case of CCDC39 mutations, a relatively conserved mean CBF with a high maximal CBF. Central complex defect induces nearly normal beating parameters, regardless of the gene involved, and a gyrating motion in a minority of ciliated edges, especially in case of RSPH1 mutations. PCD with normal ultrastructure exhibits heterogeneous HSV values, but mostly an increased CBF with an extremely high maximal CBF. CONCLUSION: Quantitative HSV analysis in PCD objectives beating anomalies associated with specific ciliary ultrastructures and genotypes. It represents a promising approach to guide the molecular analyses towards the best candidate gene(s) to be analysed or to assess the pathogenicity of the numerous sequence variants identified by next-generation-sequencing.


Subject(s)
Axonemal Dyneins/genetics , Cilia/genetics , Ciliary Motility Disorders/genetics , Cytoskeletal Proteins/genetics , DNA-Binding Proteins/genetics , Adolescent , Adult , Axoneme/genetics , Axoneme/pathology , Child , Child, Preschool , Cilia/pathology , Ciliary Motility Disorders/diagnostic imaging , Ciliary Motility Disorders/pathology , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Microscopy, Video , Middle Aged , Mutation/genetics , Phenotype , Young Adult
3.
Am J Hum Genet ; 105(1): 198-212, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31178125

ABSTRACT

Motile cilia and sperm flagella share an evolutionarily conserved axonemal structure. Their structural and/or functional defects are associated with primary ciliary dyskinesia (PCD), a genetic disease characterized by chronic respiratory-tract infections and in which most males are infertile due to asthenozoospermia. Among the well-characterized axonemal protein complexes, the outer dynein arms (ODAs), through ATPase activity of their heavy chains (HCs), play a major role for cilia and flagella beating. However, the contribution of the different HCs (γ-type: DNAH5 and DNAH8 and ß-type: DNAH9, DNAH11, and DNAH17) in ODAs from both organelles is unknown. By analyzing five male individuals who consulted for isolated infertility and displayed a loss of ODAs in their sperm cells but not in their respiratory cells, we identified bi-allelic mutations in DNAH17. The isolated infertility phenotype prompted us to compare the protein composition of ODAs in the sperm and ciliary axonemes from control individuals. We show that DNAH17 and DNAH8, but not DNAH5, DNAH9, or DNAH11, colocalize with α-tubulin along the sperm axoneme, whereas the reverse picture is observed in respiratory cilia, thus explaining the phenotype restricted to sperm cells. We also demonstrate the loss of function associated with DNAH17 mutations in two unrelated individuals by performing immunoblot and immunofluorescence analyses on sperm cells; these analyses indicated the absence of DNAH17 and DNAH8, whereas DNAH2 and DNALI, two inner dynein arm components, were present. Overall, this study demonstrates that mutations in DNAH17 are responsible for isolated male infertility and provides information regarding ODA composition in human spermatozoa.


Subject(s)
Asthenozoospermia/complications , Axonemal Dyneins/genetics , Infertility, Male/etiology , Mutation , Spermatozoa/pathology , Adult , Humans , Infertility, Male/metabolism , Infertility, Male/pathology , Male , Pedigree , Phenotype , Spermatozoa/metabolism
4.
Hum Mutat ; 40(11): 2033-2043, 2019 11.
Article in English | MEDLINE | ID: mdl-31231873

ABSTRACT

Isolated growth hormone deficiency (IGHD) is a rare condition mainly caused by mutations in GH1. The aim of this study was to assess the contribution of GHRHR mutations to IGHD in an unusually large group of patients. All GHRHR coding exons and flanking intronic regions were sequenced in 312 unrelated patients with nonsyndromic IGHD. Functional consequences of all newly identified missense variants were assessed in vitro (i.e., study of the expression of recombinant GHRHRs and their ability to activate the cyclic adenosine monophosphate (cAMP) signaling pathway). Genotype-phenotype correlation analyses were performed according to the nature of the identified mutation. We identified 20 different disease-causing GHRHR mutations (truncating and missense loss-of-function mutations), among which 15 are novel, in 24 unrelated patients. Of note, about half (13/24) of those patients represent sporadic cases. The clinical phenotype of patients with at least one missense GHRHR mutation was found to be indistinguishable from that of patients with bi-allelic truncating mutations. This study, which unveils disease-causing GHRHR mutations in 8% (24/312) of IGHD cases, identifies GHRHR as the second IGHD gene most frequently involved after GH1. The finding that 8% of IGHD cases without GH1 mutations are explained by GHRHR molecular defects (including missense mutations), together with the high proportion of sporadic cases among those patients, has important implications for genetic counseling.


Subject(s)
Dwarfism, Pituitary/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Receptors, Neuropeptide/genetics , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Alleles , Amino Acid Sequence , Amino Acid Substitution , Cyclic AMP , DNA Mutational Analysis , Dwarfism, Pituitary/diagnosis , Female , Genotype , Human Growth Hormone/genetics , Humans , Male , Pedigree , Receptors, Neuropeptide/chemistry , Receptors, Pituitary Hormone-Regulating Hormone/chemistry
5.
J Clin Endocrinol Metab ; 102(1): 290-301, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27820671

ABSTRACT

Context: LHX4 encodes a LIM-homeodomain transcription factor that is implicated in early pituitary development. In humans, only 13 heterozygous LHX4 mutations have been associated with congenital hypopituitarism. Objective: The aims of this study were to evaluate the prevalence of LHX4 mutations in patients with hypopituitarism, to define the associated phenotypes, and to characterize the functional impact of the identified variants and the respective role of the 2 LIM domains of LHX4. Design and Patients: We screened 417 unrelated patients with isolated growth hormone deficiency or combined pituitary hormone deficiency associated with ectopic posterior pituitary and/or sella turcica anomalies for LHX4 mutations (Sanger sequencing). In vitro studies were performed to assess the functional consequences of the identified variants. Results: We identified 7 heterozygous variations, including p.(Tyr131*), p.(Arg48Thrfs*104), c.606+1G>T, p.Arg65Val, p.Thr163Pro, p.Arg221Gln, and p.Arg235Gln), that were associated with variable expressivity; 5 of the 7 were also associated with incomplete penetrance. The p.(Tyr131*), p.(Arg48Thrfs*104), p.Ala65Val, p.Thr163Pro, and p.Arg221Gln LHX4 variants are unable to transactivate the POU1F1 and GH promoters. As suggested by transactivation, subcellular localization, and protein-protein interaction studies, p.Arg235Gln is probably a rare polymorphism. Coimmunoprecipitation studies identified LHX3 as a potential protein partner of LHX4. As revealed by functional studies of LIM-defective recombinant LHX4 proteins, the LIM1 and LIM2 domains are not redundant. Conclusion: This study, performed in the largest cohort of patients screened so far for LHX4 mutations, describes 6 disease-causing mutations that are responsible for congenital hypopituitarism. LHX4 mutations were found to be associated with variable expressivity, and most of them with incomplete penetrance; their contribution to pituitary deficits that are associated with an ectopic posterior pituitary and/or a sella turcica defect is ∼1.4% in the 417 probands tested.


Subject(s)
Hypopituitarism/genetics , LIM-Homeodomain Proteins/genetics , Mutation/genetics , Transcription Factors/genetics , Adolescent , Amino Acid Sequence , Biomarkers/metabolism , Blotting, Western , Child , Child, Preschool , Cohort Studies , Female , Follow-Up Studies , Humans , Immunoprecipitation , Infant , Infant, Newborn , Male , Pedigree , Prognosis , Sequence Homology, Amino Acid
6.
J Med Genet ; 49(6): 410-6, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22693285

ABSTRACT

BACKGROUND: CCDC39 and CCDC40 genes have recently been implicated in primary ciliary dyskinesia (PCD) with inner dynein arm (IDA) defects and axonemal disorganisation; their contribution to the disease is, however, unknown. Aiming to delineate the CCDC39/CCDC40 mutation spectrum and associated phenotypes, this study screened a large cohort of patients with IDA defects, in whom clinical and ciliary phenotypes were accurately described. METHODS: All CCDC39 and CCDC40 exons and intronic boundaries were sequenced in 43 patients from 40 unrelated families. The study recorded and compared clinical features (sex, origin, consanguinity, laterality defects, ages at first symptoms and at phenotype evaluation, neonatal respiratory distress, airway infections, nasal polyposis, otitis media, bronchiectasis, infertility), ciliary beat frequency, and quantitative ultrastructural analyses of cilia and sperm flagella. RESULTS: Biallelic CCDC39 or CCDC40 mutations were identified in 30/34 (88.2%) unrelated families with IDA defects associated with axonemal disorganisation (22 and eight families, respectively). Fourteen of the 28 identified mutations are novel. No mutation was found in the six families with isolated IDA defects. Patients with identified mutations shared a similar phenotype, in terms of both clinical features and ciliary structure and function. The sperm flagellar ultrastructure, analysed in 4/7 infertile males, showed evidence of abnormalities similar to the ciliary ones. CONCLUSIONS: CCDC39 and CCDC40 mutations represent the major cause of PCD with IDA defects and axonemal disorganisation. Patients carrying CCDC39 or CCDC40 mutations are phenotypically indistinguishable. CCDC39 and CCDC40 analyses in selected patients ensure mutations are found with high probability, even if clinical or ciliary phenotypes cannot prioritise one analysis over the other.


Subject(s)
Kartagener Syndrome/genetics , Proteins/genetics , Adolescent , Adult , Aged , Axoneme/genetics , Axoneme/pathology , Child , Child, Preschool , Cilia/genetics , Cilia/pathology , Cohort Studies , Cytoskeletal Proteins , DNA Mutational Analysis , Female , Humans , Infant , Male , Middle Aged , Mutation/genetics , Phenotype , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...