Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
ACS Catal ; 14(9): 6470-6487, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38721381

ABSTRACT

Solar-assisted CO2 conversion into fuels and chemical products involves a range of technologies aimed at driving industrial decarbonization methods. In this work, we report on the development of a series of multifunctional metal-organic frameworks (MOFs) based on nitro- or amino-functionalized UiO-66(M) (M: Zr or Zr/Ti) supported RuOx NPs as photocatalysts, having different energy band level diagrams, for CO2 hydrogenation under simulated concentrated sunlight irradiation. RuOx(1 wt %; 2.2 ± 0.9 nm)@UiO-66(Zr/Ti)-NO2 was found to be a reusable photocatalyst, to be selective for CO2 methanation (5.03 mmol g-1 after 22 h;, apparent quantum yield at 350, 400, and 600 nm of 1.67, 0.25, and 0.01%, respectively), and to show about 3-6 times activity compared with previous investigations. The photocatalysts were characterized by advanced spectroscopic techniques like femto- and nanosecond transient absorption, spin electron resonance, and photoluminescence spectroscopies together with (photo)electrochemical measurements. The photocatalytic CO2 methanation mechanism was assessed by operando FTIR spectroscopy. The results indicate that the most active photocatalyst operates under a dual photochemical and photothermal mechanism. This investigation shows the potential of multifunctional MOFs as photocatalysts for solar-driven CO2 recycling.

2.
Adv Mater ; : e2403053, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767509

ABSTRACT

Nitrogen oxides represent one of the main threats for the environment. Despite decades of intensive research efforts, a sustainable solution for NOx removal under environmental conditions is still undefined. Using theoretical modelling, material design, state-of-the-art investigation methods and mimicking enzymes, we have found that selected porous hybrid iron(II/III) based MOF material are able to decompose NOx, at room temperature, in the presence of water and oxygen, into N2 and O2 and without reducing agents. This paves the way to the development of new highly sustainable heterogeneous catalysts to improve air quality. This article is protected by copyright. All rights reserved.

3.
Nat Commun ; 15(1): 3434, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653991

ABSTRACT

The size and defects in crystalline inorganic materials are of importance in many applications, particularly catalysis, as it often results in enhanced/emerging properties. So far, applying the strategy of modulation chemistry has been unable to afford high-quality functional Metal-Organic Frameworks (MOFs) nanocrystals with minimized size while exhibiting maximized defects. We report here a general sustainable strategy for the design of highly defective and ultra-small tetravalent MOFs (Zr, Hf) crystals (ca. 35% missing linker, 4-6 nm). Advanced characterizations have been performed to shed light on the main factors governing the crystallization mechanism and to identify the nature of the defects. The ultra-small nanoMOFs showed exceptional performance in peptide hydrolysis reaction, including high reactivity, selectivity, diffusion, stability, and show emerging tailorable reactivity and selectivity towards peptide bond formation simply by changing the reaction solvent. Therefore, these highly defective ultra-small M(IV)-MOFs particles open new perspectives for the development of heterogeneous MOF catalysts with dual functions.

4.
Adv Sci (Weinh) ; : e2401070, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526150

ABSTRACT

Herein, a robust microporous aluminum tetracarboxylate framework, MIL-120(Al)-AP, (MIL, AP: Institute Lavoisier and Ambient Pressure synthesis, respectively) is reported, which exhibits high CO2 uptake (1.9 mmol g-1 at 0.1 bar, 298 K). In situ Synchrotron X-ray diffraction measurements together with Monte Carlo simulations reveal that this structure offers a favorable CO2 capture configuration with the pores being decorated with a high density of µ2-OH groups and accessible aromatic rings. Meanwhile, based on calculations and experimental evidence, moderate host-guest interactions Qst (CO2) value of MIL-120(Al)-AP (-40 kJ mol-1) is deduced, suggesting a relatively low energy penalty for full regeneration. Moreover, an environmentally friendly ambient pressure green route, relying on inexpensive raw materials, is developed to prepare MIL-120(Al)-AP at the kilogram scale with a high yield while the Metal- Organic Framework (MOF) is further shaped with inorganic binders as millimeter-sized mechanically stable beads. First evidences of its efficient CO2/N2 separation ability are validated by breakthrough experiments while operando IR experiments indicate a kinetically favorable CO2 adsorption over water. Finally, a techno-economic analysis gives an estimated production cost of ≈ 13 $ kg-1, significantly lower than for other benchmark MOFs. These advancements make MIL-120(Al)-AP an excellent candidate as an adsorbent for industrial-scale CO2 capture processes.

5.
J Am Chem Soc ; 145(28): 15313-15323, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37394746

ABSTRACT

Structural flexibility is an intrinsic feature of zeolites, and the characterization of such dynamic behavior is key to maximizing their performance and realizing their potential in both existing and emerging applications. Here, the flexibility of a high-aluminum nano-sized RHO zeolite is directly visualized with in situ TEM for the first time. Variable temperature experiments directly observe the physical expansion of the discrete nanocrystals in response to changes in both guest-molecule chemistry (Ar vs CO2) and temperature. The observations are complemented by operando FTIR spectroscopy verifying the nature of the adsorbed CO2 within the pore network, the desorption kinetics of carbonate species, and changes to the structural bands at high temperatures. Quantum chemical modeling of the RHO zeolite structure substantiates the effect of cation (Na+ and Cs+) mobility in the absence and presence of CO2 on the flexibility behavior of the structure. The results demonstrate the combined influences of temperature and CO2 on the structural flexibility consistent with the experimental microscopy observations.

6.
Angew Chem Int Ed Engl ; 62(6): e202211583, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36468308

ABSTRACT

Metal-Organic Frameworks (MOFs) with open metal sites (OMS) interact strongly with a range of polar gases/vapors. However, under ambient conditions, their selective adsorption is generally impaired due to a high OMS affinity to water. This led previously to the privilege selection of hydrophobic MOFs for the selective capture/detection of volatile organic compounds (VOCs). Herein, we show that this paradigm is challenged by metal(III) polycarboxylates MOFs, bearing a high concentration of OMS, as MIL-100(Fe), enabling the selective capture of polar VOCs even in the presence of water. With experimental and computational tools, including single-component gravimetric and dynamic mixture adsorption measurements, in situ infrared (IR) spectroscopy and Density Functional Theory calculations we reveal that this adsorption mechanism involves a direct coordination of the VOC on the OMS, associated with an interaction energy that exceeds that of water. Hence, MOFs with OMS are demonstrated to be of interest for air purification purposes.

7.
Angew Chem Int Ed Engl ; 61(43): e202211848, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36055971

ABSTRACT

Encapsulating ultrasmall Cu nanoparticles inside Zr-MOFs to form core-shell architecture is very challenging but of interest for CO2 reduction. We report for the first time the incorporation of ultrasmall Cu NCs into a series of benchmark Zr-MOFs, without Cu NCs aggregation, via a scalable room temperature fabrication approach. The Cu NCs@MOFs core-shell composites show much enhanced reactivity in comparison to the Cu NCs confined in the pore of MOFs, regardless of their very similar intrinsic properties at the atomic level. Moreover, introducing polar groups on the MOF structure can further improve both the catalytic reactivity and selectivity. Mechanistic investigation reveals that the CuI sites located at the interface between Cu NCs and support serve as the active sites and efficiently catalyze CO2 photoreduction. This synergetic effect may pave the way for the design of low-cost and efficient catalysts for CO2 photoreduction into high-value chemical feedstock.

8.
J Am Chem Soc ; 144(36): 16433-16446, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36047929

ABSTRACT

Formic acid is considered as one of the most promising liquid organic hydrogen carriers. Its catalytic dehydrogenation process generally suffers from low activity, low reaction selectivity, low stability of the catalysts, and/or the use of noble-metal-based catalysts. Herein we report a highly selective, efficient, and noble-metal-free photocatalyst for the dehydrogenation of formic acid. This catalyst, UiO-66(COOH)2-Cu, is built by postmetalation of a carboxylic-functionalized Zr-MOF with copper. The visible-light-driven photocatalytic dehydrogenation process through the release of hydrogen and carbon dioxide has been monitored in real-time via operando Fourier transform infrared spectroscopy, which revealed almost 100% selectivity with high stability (over 3 days) and a conversion yield exceeding 60% (around 5 mmol·gcat-1·h-1) under ambient conditions. These performance indicators make UiO-66(COOH)2-Cu among the top photocatalysts for formic acid dehydrogenation. Interestingly, the as-prepared UiO-66(COOH)2-Cu hetero-nanostructure was found to be moderately active under solar irradiation during an induction phase, whereupon it undergoes an in-situ restructuring process through intraframework cross-linking with the formation of the anhydride analogue structure UiO-66(COO)2-Cu and nanoclustering of highly active and stable copper sites, as evidenced by the operando studies coupled with steady-state isotopic transient kinetic experiments, transmission electron microscopy and X-ray photoelectron spectroscopy analyses, and Density Functional Theory calculations. Beyond revealing outstanding catalytic performance for UiO-66(COO)2-Cu, this work delivers an in-depth understanding of the photocatalytic reaction mechanism, which involves evolutive behavior of the postmetalated copper as well as the MOF framework over the reaction. These key findings pave the way toward the engineering of new and efficient catalysts for photocatalytic dehydrogenation of formic acid.

9.
Top Curr Chem (Cham) ; 380(5): 37, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35951125

ABSTRACT

In photocatalysis, a set of elemental steps are involved together at different timescales to govern the overall efficiency of the process. These steps are divided as follow: (1) photon absorption and excitation (in femtoseconds), (2) charge separation (femto- to picoseconds), (3) charge carrier diffusion/transport (nano- to microseconds), and (4 and 5) reactant activation/conversion and mass transfer (micro- to milliseconds). The identification and quantification of these steps, using the appropriate tool/technique, can provide the guidelines to emphasize the most influential key parameter that improve the overall efficiency and to develop the "photocatalyst by design" concept. In this review, the identification/quantification of reactant activation/conversion and mass transfer (steps 4 and 5) is discussed in details using the in situ/operando techniques, especially the infrared (IR), Raman, and X-ray absorption spectroscopy (XAS). The use of these techniques in photocatalysis was highlighted by the most recent and conclusive case studies which allow a better characterization of the active site and reveal the reaction pathways in order to establish a structure-performance relationship. In each case study, the reaction conditions and the reactor design for photocatalysis (pressure, temperature, concentration, etc.) were thoroughly discussed. In the last part, some examples in the use of time-resolved techniques (time-resolved FTIR, photoluminescence, and transient absorption) are also presented as an author's guideline to study the elemental steps in photocatalysis at shorter timescale (ps, ns, and µs).


Subject(s)
Photons , Temperature , X-Ray Absorption Spectroscopy
10.
J Phys Chem C Nanomater Interfaces ; 125(23): 12650-12662, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34276865

ABSTRACT

The study provides deep insight into the origin of photocatalytic deactivation of Nb2O5 after modification with ceria. Of particular interest was to fully understand the role of ceria species in diminishing the photocatalytic performance of CeO2/Nb2O5 heterostructures. For this purpose, ceria was loaded on niobia surfaces by wet impregnation. The as-prepared materials were characterized by powder X-ray diffraction, nitrogen physisorption, UV-visible spectroscopy, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. Photocatalytic activity of parent metal oxides (i.e., Nb2O5 and CeO2) and as-prepared CeO2/Nb2O5 heterostructures with different ceria loadings were tested in methanol photooxidation, a model gas-phase reaction. Deep insight into the photocatalytic process provided by operando-IR techniques combined with results of photoluminescence studies revealed that deactivation of CeO2/Nb2O5 heterostructures resulted from increased recombination of photo-excited electrons and holes. The main factor contributing to more efficient recombination of the charge carriers in the heterostructures was the ultrafine size of the ceria species. The presence of such highly dispersed ceria species on the niobia surface provided a strong interface between these two semiconductors, enabling efficient charge transfer from Nb2O5 to CeO2. However, the ceria species supported on niobia exhibited a high defect site concentration, which acted as highly active recombination centers for the photo-induced charge carriers.

11.
Anal Chem ; 92(7): 5100-5106, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32153187

ABSTRACT

Raman and transmission FTIR spectroscopic techniques have been coupled in a new homemade reactor-cell designed in a joint CSIC-LCS collaboration. The setup is easily adapted to any FTIR and fiber-coupled Raman spectrometers and gas analysis techniques. It allows for simultaneous operando FTIR and Raman spectroscopic measurement, which provide complementary characterization of adsorbed species, reaction intermediates, and structural properties of the catalyst. This system was validated with the study of vanadium-based catalysts during propane oxydehydrogenation (ODH). The combined use of both spectroscopies with gas analysis techniques to measure the activity contributes to the understanding of propane ODH and the identification of the role of different oxygen species bound to vanadium sites. For example, the simultaneous characterization of the catalyst under the same conditions by IR and Raman confirms that the V═O mode has the same frequency in both spectroscopies and that bridging oxygen sites (V-O-V, V-O-Zr) present higher activity than terminal V═O bonds. These results demonstrate the high potential of the new simultaneous transmission IR-Raman operando rig to correlate the activity and the structure of catalysts, thus assisting the rational design of catalytic processes.

12.
Angew Chem Int Ed Engl ; 59(13): 5135-5143, 2020 03 23.
Article in English | MEDLINE | ID: mdl-31951064

ABSTRACT

Materials for the controlled release of nitric oxide (NO) are of interest for therapeutic applications. However, to date, many suffer from toxicity and stability issues, as well as poor performance. Herein, we propose a new NO adsorption/release mechanism through the formation of nitrites on the skeleton of a titanium-based metal-organic framework (MOF) that we named MIP-177, featuring a suitable set of properties for such an application: (i) high NO storage capacity (3 µmol mg-1solid ), (ii) excellent biocompatibility at therapeutic relevant concentrations (no cytotoxicity at 90 µg mL-1 for wound healing) due to its high stability in biological media (<9 % degradation in 72 hours) and (iii) slow NO release in biological media (≈2 hours for 90 % release). The prospective application of MIP-177 is demonstrated through NO-driven control of mitochondrial respiration in cells and stimulation of cell migration, paving the way for the design of new NO delivery systems for wound healing therapy.


Subject(s)
Biocompatible Materials/chemistry , Delayed-Action Preparations/chemistry , Drug Carriers/chemistry , Metal-Organic Frameworks/chemistry , Nitric Oxide/chemistry , Nitric Oxide/pharmacology , Titanium/chemistry , Adsorption , Cell Physiological Phenomena/drug effects , Drug Liberation , Porosity , Wound Healing/drug effects
13.
Chem Commun (Camb) ; 55(34): 4977-4980, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30968078

ABSTRACT

The hydrogenation of carbon dioxide into formic acid (FA) with Earth-abundant metals is a vibrant research area because FA is an attractive molecule for hydrogen storage. We report a cyclopentadienyl iron tricarbonyl complex that provides up to 3000 turnover number for carbon dioxide hydrogenation when combined with a catalytic amount of the chromium dicarboxylate MOF MIL-53(Cr). To date, this is the highest turnover number reported in the presence of a phosphine-free iron complex.

14.
Anal Chem ; 91(7): 4368-4373, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30807100

ABSTRACT

For the first time, a standard rapid-scan Fourier-transform infrared (FT-IR) spectrometer was coupled with quantum cascade lasers (QCLs) tunable within the 1876-905 cm-1 spectral range, within one single setup, by keeping one single sample compartment. The aim was to extend the time resolution of absorption measurements by several orders of magnitude thanks to the fast pulsed QCL technology without losing the spectral information provided by standard FT-IR spectroscopy, both probing the same sample. By slightly modifying the optical bench arrangement, the spectrometer now enables a fast and easy switch between the standard FT-IR mode, used for classical broadband scans from 6000 to 650 cm-1, and the new QCL-irradiation mode, used for ultrafast recording at specific wavenumbers (the two diagnostics have superimposed beam paths). So, one can study a sample (in condensed or gaseous state) during a physical or chemical transformation first as a whole in a broadband configuration and then immediately switch to the QCL mode to monitor a selected absorption feature (associated with an intermediate, a structural change, a diffusing substance, etc., for example) versus time. The QCL mode then drastically boosts the time resolution from tens of milliseconds (in rapid-scan FT-IR) to a few microseconds, as demonstrated here in the case of ammonia diffusion into a commercial zeolite ZSM-5.

15.
Nat Mater ; 16(5): 526-531, 2017 05.
Article in English | MEDLINE | ID: mdl-27992421

ABSTRACT

Selective dinitrogen binding to transition metal ions mainly covers two strategic domains: biological nitrogen fixation catalysed by metalloenzyme nitrogenases, and adsorptive purification of natural gas and air. Many transition metal-dinitrogen complexes have been envisaged for biomimetic nitrogen fixation to produce ammonia. Inspired by this concept, here we report mesoporous metal-organic framework materials containing accessible Cr(III) sites, able to thermodynamically capture N2 over CH4 and O2. This fundamental study integrating advanced experimental and computational tools confirmed that the separation mechanism for both N2/CH4 and N2/O2 gas mixtures is driven by the presence of these unsaturated Cr(III) sites that allows a much stronger binding of N2 over the two other gases. Besides the potential breakthrough in adsorption-based technologies, this proof of concept could open new horizons to address several challenges in chemistry, including the design of heterogeneous biomimetic catalysts through nitrogen fixation.

16.
Adv Funct Mater ; 26(18): 3154-3163, 2016 May 10.
Article in English | MEDLINE | ID: mdl-29200991

ABSTRACT

Mixed-matrix membranes (MMMs) comprising NH2-MIL-53(Al) and Matrimid® or 6FDA-DAM have been investigated. The MOF loading has been varied between 5 and 20 wt%, while NH2-MIL-53(Al) with three different morphologies: nanoparticles, nanorods and microneedles have been dispersed in Matrimid®. The synthesized membranes have been tested in the separation of CO2 from CH4 in an equimolar mixture. At 3 bar and 298 K for 8 wt% MOF loading, incorporation of NH2-MIL-53(Al) nanoparticles leads to the largest improvement compared to nanorods and microneedles. The incorporation of the best performing filler, i.e. NH2-MIL-53(Al) nanoparticles, to the highly permeable 6FDA-DAM has a larger effect, and the CO2 permeability increased up to 85 % with slightly lower selectivities for 20 wt% MOF loading. Specifically, these membranes have a permeability of 660 Barrer with CO2/CH4 separation factor of 28, leading to a performance very close to the Robeson limit of 2008. Furthermore, a new non-destructive technique based on Raman spectroscopy mapping is introduced to assess the homogeneity of the filler dispersion in the polymer matrix. The MOF contribution can be calculated by modelling the spectra. The determined homogeneity of the MOF filler distribution in the polymer is confirmed by FIB-SEM analysis.

17.
Chemistry ; 21(50): 18431-8, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26515022

ABSTRACT

A reducible metal-organic framework (MOF), iron(III) trimesate, denoted as MIL-100(Fe), was investigated for the separation and purification of methane/ethane/ethylene/acetylene and an acetylene/CO2 mixtures by using sorption isotherms, breakthrough experiments, ideal adsorbed solution theory (IAST) calculations, and IR spectroscopic analysis. The MIL-100(Fe) showed high adsorption selectivity not only for acetylene and ethylene over methane and ethane, but also for acetylene over CO2 . The separation and purification of acetylene over ethylene was also possible for MIL-100(Fe) activated at 423 K. According to the data obtained from operando IR spectroscopy, the unsaturated Fe(III) sites and surface OH groups are mainly responsible for the successful separation of the acetylene/ethylene mixture, whereas the unsaturated Fe(II) sites have a detrimental effect on both separation and purification. The potential of MIL-100(Fe) for the separation of a mixture of C2 H2 /CO2 was also examined by using the IAST calculations and transient breakthrough simulations. Comparing the IAST selectivity calculations of C2 H2 /CO2 for four MOFs selected from the literature, the selectivity with MIL-100(Fe) was higher than those of CuBTC, ZJU-60a, and PCP-33, but lower than that of HOF-3.

18.
Chem Commun (Camb) ; 51(77): 14458-61, 2015 Oct 04.
Article in English | MEDLINE | ID: mdl-26278204

ABSTRACT

Crystallisation of a mixed-metal form of the porous framework UiO-66 in which Zr is partially replaced by Ce produces a ligand-defective material, that contains some Ce(III) as well as a majority of Ce(IV). Infrared spectroscopy shows enhanced binding of methanol in the substituted material that leads to catalytic decomposition of the alcohol, which may be due to a combination of defects and redox activity.

19.
Phys Chem Chem Phys ; 17(17): 11277-83, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25835980

ABSTRACT

This work is a mechanistic study of total and partial methanol photooxidation using operando FTIR coupled to gas phase analysis techniques (gas-IR and MS). Methoxy and formate/formyl species play a key role in the reaction. Methoxy species are formed by thermal and photochemical dissociation of methanol. The formation of methylformate is favored by a high surface coverage by methoxy species. Surface and/or bridged oxygen atoms are also important actors. Steady State Isotopic Transient Kinetic Analysis (SSITKA) experiments showed that the limiting step is the conversion of chemisorbed formyl/formate and that methylformate is a secondary product from a reaction between methoxy and neighboring formyl species. Methanol concentration, among other reaction parameters, influences greatly the selectivity of photooxidation.

20.
Angew Chem Int Ed Engl ; 54(12): 3664-8, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25655768

ABSTRACT

The synthesis of the commercially available aluminum fumarate sample A520 has been optimized and its structure analyzed through a combination of powder diffraction, solid-state NMR spectroscopy, molecular simulation, IR spectroscopy, and thermal analysis. A520 is an analogue of the MIL-53(Al)-BDC solid, but with a more rigid behavior. The differences between the commercial and the optimized samples in terms of defects have been investigated by in situ IR spectroscopy and correlated to their catalytic activity for ethanol dehydration.

SELECTION OF CITATIONS
SEARCH DETAIL
...