Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
iScience ; 27(1): 108638, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38213622

ABSTRACT

Exercise training has tremendous systemic tissue-specific health benefits, but the molecular adaptations to long-term exercise training are not completely understood. We investigated the skeletal muscle proteome of highly endurance-trained, strength-trained, and untrained individuals and performed exercise- and sex-specific analyses. Of the 6,000+ proteins identified, >650 were differentially expressed in endurance-trained individuals compared with controls. Strikingly, 92% of the shared proteins with higher expression in both the male and female endurance groups were known mitochondrial. In contrast to the findings in endurance-trained individuals, minimal differences were found in strength-trained individuals and between females and males. Lastly, a co-expression network and comparative literature analysis revealed key proteins and pathways related to the health benefits of exercise, which were primarily related to differences in mitochondrial proteins. This network is available as an interactive database resource where investigators can correlate clinical data with global gene and protein expression data for hypothesis generation.

2.
Sci Rep ; 13(1): 10519, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37386098

ABSTRACT

Research continues to identify genetic variation, environmental exposures, and their mixtures underlying different diseases and conditions. There is a need for screening methods to understand the molecular outcomes of such factors. Here, we investigate a highly efficient and multiplexable, fractional factorial experimental design (FFED) to study six environmental factors (lead, valproic acid, bisphenol A, ethanol, fluoxetine hydrochloride and zinc deficiency) and four human induced pluripotent stem cell line derived differentiating human neural progenitors. We showcase the FFED coupled with RNA-sequencing to identify the effects of low-grade exposures to these environmental factors and analyse the results in the context of autism spectrum disorder (ASD). We performed this after 5-day exposures on differentiating human neural progenitors accompanied by a layered analytical approach and detected several convergent and divergent, gene and pathway level responses. We revealed significant upregulation of pathways related to synaptic function and lipid metabolism following lead and fluoxetine exposure, respectively. Moreover, fluoxetine exposure elevated several fatty acids when validated using mass spectrometry-based metabolomics. Our study demonstrates that the FFED can be used for multiplexed transcriptomic analyses to detect relevant pathway-level changes in human neural development caused by low-grade environmental risk factors. Future studies will require multiple cell lines with different genetic backgrounds for characterising the effects of environmental exposures in ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Induced Pluripotent Stem Cells , Humans , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics , Fluoxetine/pharmacology , Research Design , Transcriptome
3.
Nat Genet ; 54(3): 283-294, 2022 03.
Article in English | MEDLINE | ID: mdl-35190730

ABSTRACT

DNA can determine where and when genes are expressed, but the full set of sequence determinants that control gene expression is unknown. Here, we measured the transcriptional activity of DNA sequences that represent an ~100 times larger sequence space than the human genome using massively parallel reporter assays (MPRAs). Machine learning models revealed that transcription factors (TFs) generally act in an additive manner with weak grammar and that most enhancers increase expression from a promoter by a mechanism that does not appear to involve specific TF-TF interactions. The enhancers themselves can be classified into three types: classical, closed chromatin and chromatin dependent. We also show that few TFs are strongly active in a cell, with most activities being similar between cell types. Individual TFs can have multiple gene regulatory activities, including chromatin opening and enhancing, promoting and determining transcription start site (TSS) activity, consistent with the view that the TF binding motif is the key atomic unit of gene expression.


Subject(s)
Regulatory Sequences, Nucleic Acid , Transcription Factors , Binding Sites/genetics , Genome, Human/genetics , Humans , Protein Binding , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
4.
STAR Protoc ; 2(4): 100995, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34950881

ABSTRACT

We have developed a protocol for barcoded cDNA libraries of 48 samples to study gene expression across tissues in the domestic dog, Canis familiaris, by modifying the Single-Cell Tagged Reverse Transcription (STRT) protocol (Islam et al., 2012, 2014). The cDNA reads represent mRNA 5' ends, enabling the study of transcription start sites (TSS). Our modifications include longer UMIs for molecular counting and Globin-Lock® to deplete globin mRNAs that are abundant in blood and blood-rich tissues dominating all reads.


Subject(s)
Gene Library , Globins/genetics , RNA-Seq/methods , Transcriptome/genetics , Animals , Dogs , Globins/analysis , Globins/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Diabetes ; 70(7): 1486-1497, 2021 07.
Article in English | MEDLINE | ID: mdl-33863803

ABSTRACT

Selective hepatic insulin resistance is a feature of obesity and type 2 diabetes. Whether similar mechanisms operate in white adipose tissue (WAT) of those with obesity and to what extent these are normalized by weight loss are unknown. We determined insulin sensitivity by hyperinsulinemic euglycemic clamp and insulin response in subcutaneous WAT by RNA sequencing in 23 women with obesity before and 2 years after bariatric surgery. To control for effects of surgery, women postsurgery were matched to never-obese women. Multidimensional analyses of 138 samples allowed us to classify the effects of insulin into three distinct expression responses: a common set was present in all three groups and included genes encoding several lipid/cholesterol biosynthesis enzymes; a set of obesity-attenuated genes linked to tissue remodeling and protein translation was selectively regulated in the two nonobese states; and several postobesity-enriched genes encoding proteins involved in, for example, one-carbon metabolism were only responsive to insulin in the women who had lost weight. Altogether, human WAT displays a selective insulin response in the obese state, where most genes are normalized by weight loss. This comprehensive atlas provides insights into the transcriptional effects of insulin in WAT and may identify targets to improve insulin action.


Subject(s)
Adipose Tissue, White/metabolism , Insulin Resistance , Obesity/metabolism , Female , Humans , Lipid Metabolism
6.
PLoS One ; 16(4): e0250582, 2021.
Article in English | MEDLINE | ID: mdl-33909677

ABSTRACT

Micro-endomyocardial biopsy (micro-EMB) is a novel catheter-based biopsy technique, aiming to increase flexibility and safety compared to conventional EMB. The technique was developed and evaluated in healthy swine. Therefore, the ability to detect disease related tissue changes could not be evaluated. The aim of the present pilot study was to investigate the ability to detect disease related gene expression changes using micro-EMB. Myocardial infarction was induced in three swine by coronary artery balloon occlusion. Micro-EMB samples (n = 164) were collected before, during, and after occlusion. RNA-sequencing was performed on 85 samples, and 53 of these were selected for bioinformatic analysis. A large number of responding genes was detected from the infarcted area (n = 1911). The early responding genes (n = 1268) were mostly related to apoptosis and inflammation. There were fewer responding genes two days after infarction (n = 6), which were related to extra-cellular matrix changes, and none after 14 days. In contrast to the infarcted area, samples harvested from a non-infarcted myocardial region showed considerably fewer regulated genes (n = 33). Deconvolution analysis, to estimate the proportion of different cell types, revealed a higher proportion of fibroblasts and a reduced proportion of cardiomyocytes two days after occlusion compared to baseline (p < 0.02 and p < 0.01, respectively. S5 File). In conclusion, this pilot study demonstrates the capabilities of micro-EMB to detect local gene expression responses at an early stage after ischemia, but not at later timepoints.


Subject(s)
Biopsy , Inflammation/genetics , Myocardial Infarction/diagnosis , Myocardium/metabolism , Animals , Apoptosis/genetics , Cardiac Catheterization , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Inflammation/diagnosis , Inflammation/pathology , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Pilot Projects , Swine
8.
Sci Rep ; 10(1): 8029, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415191

ABSTRACT

Endomyocardial biopsy is a valuable tool in cardiac diagnostics but is limited by low diagnostic yield and significant complication risks. Meanwhile, recent developments in transcriptomic and proteomic technologies promise a wealth of biological data from minimal tissue samples. To take advantage of the minimal tissue amount needed for molecular analyses, we have developed a sub-millimeter endovascular biopsy device, considerably smaller than current clinical equipment, and devised a low-input RNA-sequencing protocol for analyzing small tissue samples. In in vivo evaluation in swine, 81% of biopsy attempts (n = 157) were successful. High quality RNA-sequencing data was generated from 91% of the sequenced cardiac micro-biopsy samples (n = 32). Gene expression signatures of samples taken with the novel device were comparable with a conventional device. No major complications were detected either during procedures or during 7 days' follow-up, despite acquiring a relatively large number of biopsies (median 30) in each animal. In conclusion, the novel device coupled with RNA-sequencing provides a feasible method to obtain molecular data from the myocardium. The method is less traumatic and has a higher flexibility compared to conventional methods, enabling safer and more targeted sampling from different parts of the myocardium.


Subject(s)
Biopsy/methods , Myocardium/metabolism , Myocardium/pathology , Animals , Biopsy/adverse effects , Biopsy/instrumentation , Biopsy/standards , Cardiac Catheterization , Computational Biology/methods , Disease Models, Animal , Fluorescent Antibody Technique , Gene Expression Profiling , Gene Ontology , Heart Diseases/diagnosis , Heart Diseases/etiology , Heart Injuries/etiology , Heart Injuries/prevention & control , Immunohistochemistry , Molecular Sequence Annotation , Swine
9.
PLoS Genet ; 16(3): e1008659, 2020 03.
Article in English | MEDLINE | ID: mdl-32150541

ABSTRACT

Retinitis pigmentosa (RP) is the leading cause of blindness with nearly two million people affected worldwide. Many genes have been implicated in RP, yet in 30-80% of the RP patients the genetic cause remains unknown. A similar phenotype, progressive retinal atrophy (PRA), affects many dog breeds including the Miniature Schnauzer. We performed clinical, genetic and functional experiments to identify the genetic cause of PRA in the breed. The age of onset and pattern of disease progression suggested that at least two forms of PRA, types 1 and 2 respectively, affect the breed, which was confirmed by genome-wide association study that implicated two distinct genomic loci in chromosomes 15 and X, respectively. Whole-genome sequencing revealed a fully segregating recessive regulatory variant in type 1 PRA. The associated variant has a very recent origin based on haplotype analysis and lies within a regulatory site with the predicted binding site of HAND1::TCF3 transcription factor complex. Luciferase assays suggested that mutated regulatory sequence increases expression. Case-control retinal expression comparison of six best HAND1::TCF3 target genes were analyzed with quantitative reverse-transcriptase PCR assay and indicated overexpression of EDN2 and COL9A2 in the affected retina. Defects in both EDN2 and COL9A2 have been previously associated with retinal degeneration. In summary, our study describes two genetically different forms of PRA and identifies a fully penetrant variant in type 1 form with a possible regulatory effect. This would be among the first reports of a regulatory variant in retinal degeneration in any species, and establishes a new spontaneous dog model to improve our understanding of retinal biology and gene regulation while the affected breed will benefit from a reliable genetic testing.


Subject(s)
Dog Diseases/genetics , Retinal Degeneration/genetics , Retinitis Pigmentosa/genetics , Animals , Case-Control Studies , Collagen Type IX/genetics , Collagen Type IX/metabolism , Dogs , Endothelin-2/genetics , Endothelin-2/metabolism , Female , Frameshift Mutation/genetics , Genome-Wide Association Study/methods , Haplotypes/genetics , Male , Models, Animal , Mutation/genetics , Pedigree , Phenotype , Retina/metabolism , Retinitis Pigmentosa/metabolism
10.
Gigascience ; 9(3)2020 03 01.
Article in English | MEDLINE | ID: mdl-32170312

ABSTRACT

BACKGROUND: Over the past few years the variety of experimental designs and protocols for sequencing experiments increased greatly. To ensure the wide usability of the produced data beyond an individual project, rich and systematic annotation of the underlying experiments is crucial. FINDINGS: We first developed an annotation structure that captures the overall experimental design as well as the relevant details of the steps from the biological sample to the library preparation, the sequencing procedure, and the sequencing and processed files. Through various design features, such as controlled vocabularies and different field requirements, we ensured a high annotation quality, comparability, and ease of annotation. The structure can be easily adapted to a large variety of species. We then implemented the annotation strategy in a user-hosted web platform with data import, query, and export functionality. CONCLUSIONS: We present here an annotation structure and user-hosted platform for sequencing experiment data, suitable for lab-internal documentation, collaborations, and large-scale annotation efforts.


Subject(s)
Molecular Sequence Annotation/methods , Sequence Analysis/methods , Software , Molecular Sequence Annotation/standards , Sequence Analysis/standards
11.
Breast Cancer Res ; 22(1): 6, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31931856

ABSTRACT

BACKGROUND: Distinguishing ductal carcinoma in situ (DCIS) from invasive ductal carcinoma (IDC) regions in clinical biopsies constitutes a diagnostic challenge. Spatial transcriptomics (ST) is an in situ capturing method, which allows quantification and visualization of transcriptomes in individual tissue sections. In the past, studies have shown that breast cancer samples can be used to study their transcriptomes with spatial resolution in individual tissue sections. Previously, supervised machine learning methods were used in clinical studies to predict the clinical outcomes for cancer types. METHODS: We used four publicly available ST breast cancer datasets from breast tissue sections annotated by pathologists as non-malignant, DCIS, or IDC. We trained and tested a machine learning method (support vector machine) based on the expert annotation as well as based on automatic selection of cell types by their transcriptome profiles. RESULTS: We identified expression signatures for expert annotated regions (non-malignant, DCIS, and IDC) and build machine learning models. Classification results for 798 expression signature transcripts showed high coincidence with the expert pathologist annotation for DCIS (100%) and IDC (96%). Extending our analysis to include all 25,179 expressed transcripts resulted in an accuracy of 99% for DCIS and 98% for IDC. Further, classification based on an automatically identified expression signature covering all ST spots of tissue sections resulted in prediction accuracy of 95% for DCIS and 91% for IDC. CONCLUSIONS: This concept study suggest that the ST signatures learned from expert selected breast cancer tissue sections can be used to identify breast cancer regions in whole tissue sections including regions not trained on. Furthermore, the identified expression signatures can classify cancer regions in tissue sections not used for training with high accuracy. Expert-generated but even automatically generated cancer signatures from ST data might be able to classify breast cancer regions and provide clinical decision support for pathologists in the future.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/diagnosis , Carcinoma, Ductal, Breast/diagnosis , Carcinoma, Intraductal, Noninfiltrating/diagnosis , Machine Learning , Molecular Typing/methods , Transcriptome , Breast Neoplasms/classification , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , Female , Humans , ROC Curve , Spatial Analysis
12.
BMC Genomics ; 20(1): 718, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31533632

ABSTRACT

BACKGROUND: The work of the FANTOM5 Consortium has brought forth a new level of understanding of the regulation of gene transcription and the cellular processes involved in creating diversity of cell types. In this study, we extended the analysis of the FANTOM5 Cap Analysis of Gene Expression (CAGE) transcriptome data to focus on understanding the genetic regulators involved in mouse cerebellar development. RESULTS: We used the HeliScopeCAGE library sequencing on cerebellar samples over 8 embryonic and 4 early postnatal times. This study showcases temporal expression pattern changes during cerebellar development. Through a bioinformatics analysis that focused on transcription factors, their promoters and binding sites, we identified genes that appear as strong candidates for involvement in cerebellar development. We selected several candidate transcriptional regulators for validation experiments including qRT-PCR and shRNA transcript knockdown. We observed marked and reproducible developmental defects in Atf4, Rfx3, and Scrt2 knockdown embryos, which support the role of these genes in cerebellar development. CONCLUSIONS: The successful identification of these novel gene regulators in cerebellar development demonstrates that the FANTOM5 cerebellum time series is a high-quality transcriptome database for functional investigation of gene regulatory networks in cerebellar development.


Subject(s)
Cerebellum/growth & development , Gene Expression Profiling , Nucleotide Motifs/genetics , Transcription, Genetic/genetics , Activating Transcription Factor 4/deficiency , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Cerebellum/embryology , Cerebellum/metabolism , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Regulatory Factor X Transcription Factors/deficiency , Regulatory Factor X Transcription Factors/genetics , Regulatory Factor X Transcription Factors/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Sci Rep ; 8(1): 13164, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30177712

ABSTRACT

Smooth muscle cells (SMC) in blood vessels are normally growth quiescent and transcriptionally inactive. Our objective was to understand promoter usage and dynamics in SMC acutely exposed to a prototypic growth factor or pro-inflammatory cytokine. Using cap analysis gene expression (FANTOM5 project) we report differences in promoter dynamics for immediate-early genes (IEG) and other genes when SMC are exposed to fibroblast growth factor-2 or interleukin-1ß. Of the 1871 promoters responding to FGF2 or IL-1ß considerably more responded to FGF2 (68.4%) than IL-1ß (18.5%) and 13.2% responded to both. Expression clustering reveals sets of genes induced, repressed or unchanged. Among IEG responding rapidly to FGF2 or IL-1ß were FOS, FOSB and EGR-1, which mediates human SMC migration. Motif activity response analysis (MARA) indicates most transcription factor binding motifs in response to FGF2 were associated with a sharp induction at 1 h, whereas in response to IL-1ß, most motifs were associated with a biphasic change peaking generally later. MARA revealed motifs for FOS_FOS{B,L1}_JUN{B,D} and EGR-1..3 in the cluster peaking 1 h after FGF2 exposure whereas these motifs were in clusters peaking 1 h or later in response to IL-1ß. Our findings interrogating CAGE data demonstrate important differences in promoter usage and dynamics in SMC exposed to FGF2 or IL-1ß.


Subject(s)
Fibroblast Growth Factor 2/pharmacology , Gene Expression Regulation/drug effects , Genes, Immediate-Early , Interleukin-1beta/pharmacology , Myocytes, Smooth Muscle/drug effects , Promoter Regions, Genetic , Cell Movement/drug effects , Cell Proliferation/drug effects , Culture Media, Serum-Free/chemistry , Culture Media, Serum-Free/pharmacology , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Gene Expression Profiling , Humans , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Nucleotide Motifs , Primary Cell Culture , Protein Binding , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Signal Transduction
14.
Open Biol ; 8(8)2018 08.
Article in English | MEDLINE | ID: mdl-30089658

ABSTRACT

The promoters of immediate early genes (IEGs) are rapidly activated in response to an external stimulus. These genes, also known as primary response genes, have been identified in a range of cell types, under diverse extracellular signals and using varying experimental protocols. Whereas genomic dissection on a case-by-case basis has not resulted in a comprehensive catalogue of IEGs, a rigorous meta-analysis of eight genome-wide FANTOM5 CAGE (cap analysis of gene expression) time course datasets reveals successive waves of promoter activation in IEGs, recapitulating known relationships between cell types and stimuli: we obtain a set of 57 (42 protein-coding) candidate IEGs possessing promoters that consistently drive a rapid but transient increase in expression over time. These genes show significant enrichment for known IEGs reported previously, pathways associated with the immediate early response, and include a number of non-coding RNAs with roles in proliferation and differentiation. Surprisingly, we also find strong conservation of the ordering of activation for these genes, such that 77 pairwise promoter activation orderings are conserved. Using the leverage of comprehensive CAGE time series data across cell types, we also document the extensive alternative promoter usage by such genes, which is likely to have been a barrier to their discovery until now. The common activation ordering of the core set of early-responding genes we identify may indicate conserved underlying regulatory mechanisms. By contrast, the considerably larger number of transiently activated genes that are specific to each cell type and stimulus illustrates the breadth of the primary response.


Subject(s)
Gene Expression , Genes, Immediate-Early , Promoter Regions, Genetic , Transcriptional Activation , Cell Differentiation , Cell Line , Cell Proliferation , Genome, Human , Humans , Immediate-Early Proteins/genetics , MCF-7 Cells , RNA, Untranslated/genetics
15.
BMC Genomics ; 19(1): 181, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29510665

ABSTRACT

BACKGROUND: Evolutionarily conserved RFX transcription factors (TFs) regulate their target genes through a DNA sequence motif called the X-box. Thereby they regulate cellular specialization and terminal differentiation. Here, we provide a comprehensive analysis of all the eight human RFX genes (RFX1-8), their spatial and temporal expression profiles, potential upstream regulators and target genes. RESULTS: We extracted all known human RFX1-8 gene expression profiles from the FANTOM5 database derived from transcription start site (TSS) activity as captured by Cap Analysis of Gene Expression (CAGE) technology. RFX genes are broadly (RFX1-3, RFX5, RFX7) and specifically (RFX4, RFX6) expressed in different cell types, with high expression in four organ systems: immune system, gastrointestinal tract, reproductive system and nervous system. Tissue type specific expression profiles link defined RFX family members with the target gene batteries they regulate. We experimentally confirmed novel TSS locations and characterized the previously undescribed RFX8 to be lowly expressed. RFX tissue and cell type specificity arises mainly from differences in TSS architecture. RFX transcript isoforms lacking a DNA binding domain (DBD) open up new possibilities for combinatorial target gene regulation. Our results favor a new grouping of the RFX family based on protein domain composition. We uncovered and experimentally confirmed the TFs SP2 and ESR1 as upstream regulators of specific RFX genes. Using TF binding profiles from the JASPAR database, we determined relevant patterns of X-box motif positioning with respect to gene TSS locations of human RFX target genes. CONCLUSIONS: The wealth of data we provide will serve as the basis for precisely determining the roles RFX TFs play in human development and disease.


Subject(s)
Gene Expression Regulation , Genome, Human , Promoter Regions, Genetic , Regulatory Factor X Transcription Factors/genetics , Regulatory Sequences, Nucleic Acid , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Transcription Initiation Site
16.
PLoS Comput Biol ; 14(3): e1005934, 2018 03.
Article in English | MEDLINE | ID: mdl-29494619

ABSTRACT

Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.


Subject(s)
Genetic Predisposition to Disease/genetics , Genomics/methods , Promoter Regions, Genetic/genetics , Crohn Disease/genetics , Databases, Genetic , Gene Expression Profiling , Humans , Transcriptome/genetics
17.
BMC Genomics ; 19(1): 39, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29325522

ABSTRACT

CORRECTION: The authors of the original article [1] would like to recognize the critical contribution of core members of the FANTOM5 Consortium, who played the critical role of HeliScopeCAGE sequencing experiments, quality control of tag reads and processing of the raw sequencing data.

18.
Cerebellum ; 17(3): 308-325, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29307116

ABSTRACT

Laser-capture microdissection was used to isolate external germinal layer tissue from three developmental periods of mouse cerebellar development: embryonic days 13, 15, and 18. The cerebellar granule cell-enriched mRNA library was generated with next-generation sequencing using the Helicos technology. Our objective was to discover transcriptional regulators that could be important for the development of cerebellar granule cells-the most numerous neuron in the central nervous system. Through differential expression analysis, we have identified 82 differentially expressed transcription factors (TFs) from a total of 1311 differentially expressed genes. In addition, with TF-binding sequence analysis, we have identified 46 TF candidates that could be key regulators responsible for the variation in the granule cell transcriptome between developmental stages. Altogether, we identified 125 potential TFs (82 from differential expression analysis, 46 from motif analysis with 3 overlaps in the two sets). From this gene set, 37 TFs are considered novel due to the lack of previous knowledge about their roles in cerebellar development. The results from transcriptome-wide analyses were validated with existing online databases, qRT-PCR, and in situ hybridization. This study provides an initial insight into the TFs of cerebellar granule cells that might be important for development and provide valuable information for further functional studies on these transcriptional regulators.


Subject(s)
Cerebellum/embryology , Cerebellum/metabolism , Neurons/metabolism , Transcription Factors/metabolism , Animals , Computer Simulation , Gene Expression Profiling , Gene Expression Regulation, Developmental , In Situ Hybridization , Laser Capture Microdissection , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Transcriptome
19.
Am J Hypertens ; 31(4): 450-457, 2018 03 10.
Article in English | MEDLINE | ID: mdl-29177471

ABSTRACT

BACKGROUND: Arterial stiffness, measured by pulse wave velocity (PWV), is linked to obesity, cardiovascular disease, and all-cause mortality. Short-term weight loss improves PWV, but the long-term effects are unknown. We investigated the effect of pronounced long-term weight loss on PWV and whether anthropometric/metabolic parameters and/or white adipose tissue (WAT) phenotype could predict this change in PWV. METHODS: Eighty-two obese subjects were examined before and 2 years after Roux-en-Y gastric bypass. Analyses included anthropometrics, routine clinical chemistry, and hyperinsulinemic-euglycemic clamp. Arterial stiffness was measured as aortic PWV (aPWV) using the Arteriograph device. WAT mass and distribution were assessed by dual-X-ray absorptiometry. Baseline visceral and subcutaneous WAT samples were obtained to measure adipocyte cell size. Transcriptomic profiling of subcutaneous WAT was performed in a subset of subjects (n = 30). RESULTS: At the 2-year follow-up, there were significant decreases in body mass index (39.4 ± 3.5 kg/m2 vs. 26.6 ± 3.4 kg/m2; P < 0.0001) and aPWV (7.8 ± 1.5 m/s vs. 7.2 ± 1.4 m/s; P = 0.006). Multiple regression analyses showed that baseline subcutaneous adipocyte volume was associated with a reduction in aPWV (P = 0.014), after adjusting for confounders. Expression analyses of 52 genes implicated in arterial stiffness showed that only one, COL4A1, independently predicted improvements in aPWV after adjusting for confounders (P = 0.006). CONCLUSIONS: Bariatric surgery leads to long-term reduction in aPWV. This improvement can be independently predicted by subcutaneous adipocyte volume and WAT COL4A1 expression, which suggests that subcutaneous WAT has a role in regulating aPWV. CLINICAL TRIALS REGISTRATION: Trial Number NCT01727245 (clinicaltrials.gov).


Subject(s)
Adipocytes, White/metabolism , Collagen Type IV/genetics , Gastric Bypass , Obesity/surgery , Pulse Wave Analysis , Subcutaneous Fat/metabolism , Vascular Stiffness , Weight Loss , Adipocytes, White/pathology , Adult , Body Mass Index , Cell Size , Collagen Type IV/metabolism , Female , Humans , Longitudinal Studies , Male , Middle Aged , Obesity/genetics , Obesity/metabolism , Obesity/physiopathology , Predictive Value of Tests , Recovery of Function , Subcutaneous Fat/pathology , Time Factors , Transcriptome , Treatment Outcome
20.
EBioMedicine ; 24: 257-266, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28927749

ABSTRACT

The acute phase protein orosomucoid-1 (Orm1) is mainly expressed by hepatocytes (HPCs) under stress conditions. However, its specific function is not fully understood. Here, we report a role of Orm1 as an executer of HPC proliferation. Increases in serum levels of Orm1 were observed in patients after surgical resection for liver cancer and in mice undergone partial hepatectomy (PH). Transcriptome study showed that Orm1 became the most abundant in HPCs isolated from regenerating mouse liver tissues after PH. Both in vitro and in vivo siRNA-induced knockdown of Orm1 suppressed proliferation of mouse regenerating HPCs and human hepatic cells. Microarray analysis in regenerating mouse livers revealed that the signaling pathways controlling chromatin replication, especially the minichromosome maintenance protein complex genes were uniformly down-regulated following Orm1 knockdown. These data suggest that Orm1 is induced in response to hepatic injury and executes liver regeneration by activating cell cycle progression in HPCs.


Subject(s)
Gene Expression Profiling/methods , Hepatocytes/cytology , Liver Neoplasms/surgery , Oligonucleotide Array Sequence Analysis/methods , Orosomucoid/genetics , Animals , Cell Cycle , Cell Proliferation , Gene Regulatory Networks , Hepatectomy , Hepatocytes/metabolism , Humans , Liver Neoplasms/blood , Liver Neoplasms/genetics , Liver Regeneration , Mice , Orosomucoid/metabolism , Signal Transduction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...