Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Econ Entomol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728437

ABSTRACT

The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a major pest of citrus due to its role as the vector of the bacterium that causes huanglongbing. In commercial citrus, ACP control currently relies on the application of insecticides, which may not be sustainable long-term, nor practical in urban areas. The sterile insect technique (SIT) is an alternative strategy in which large numbers of pests are reared, sterilized using radiation, and then released into the field to compete with wild individuals for matings, suppressing population growth. As a fundamental step toward the development of SIT for ACP, this study sought to identify the optimum radiation dose required to sterilize ACP without affecting their survival and mating capacity. Virgin adult ACP of both sexes were subjected to doses of X-ray irradiation ranging from 40 to 480 Gy, then paired with a nonirradiated mate and allowed to produce offspring. Fecundity was estimated as the number of eggs laid, and fertility as the proportion of those eggs that hatched. Females were more radio-sensitive than males, exhibiting a major drop in fecundity at even the lowest dose and 100% sterility at 80 Gy. In contrast, a fivefold higher dose (400 Gy) did not achieve complete sterility in males, with around 5% offspring survival. However, F1 progeny of males exposed to 320 Gy or higher were subsequently found to be 100% sterile. This confirmation of inherited sterility suggests that balancing the sterilizing effects of radiation against its mortality-inducing effects may warrant further evaluation.

2.
Phytopathology ; 113(8): 1465-1473, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37080548

ABSTRACT

The pathogen Xylella fastidiosa subsp. fastidiosa has circulated through California's vineyards since its introduction from Central America in the 1800s. This pathogen is responsible for a bacterial disease called Pierce's disease (PD) of grapevine. With no known cure, PD has had devastating effects on some vineyards. Important factors that impact disease severity and persistence include: the presence of insect vectors, grapevine cultivar, management, ecology, and winter temperatures. Removal of infected vines is critical for reducing pathogen spread but relies on accurate and rapid pathogen detection. In this study, we foster a greater understanding of disease symptom emergence by way of a 3-year field inoculation project in Napa Valley. Although PD emergence and symptom progression have been studied in greenhouse and experimental plots, there is a large knowledge gap in quantifying disease progression under commercial conditions. After inoculating 80 mature Vitis vinifera vines in April 2017, we measured bacterial populations and six symptom types at four locations within each plant throughout the subsequent three growing seasons. The main foci of the project were understanding X. fastidiosa movement through the plants, infection, overwinter curing, and symptom development. We observed greater winter recovery than expected, and shriveled grape clusters proved to be a more reliable early indication of infection than other more commonly used symptoms. Although there were differences among wine grape cultivars, this work suggests that disease progression in the field may not fit the paradigm of predominant leaf scorch and low recovery rates as neatly as has been previously believed.

3.
J Econ Entomol ; 115(6): 2121-2124, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36271864

ABSTRACT

Citricola scale, [Coccus pseudomagnoliarum (Kuwana)], is a key pest of citrus requiring insecticide control in areas where biological control is ineffective. Here we quantified the relationship between C. pseudomagnoliarum density and Valencia orange (Citrus sinensis L. Osbeck) yield and sooty mold contamination to inform pest action thresholds. Two field experiments documented significant effects of adult or nymphal C. pseudomagnoliarum densities on fruit yield and sooty mold. Adults generally had more pronounced effects, reducing average tree yield by up to 43% and increasing sooty mold prevalence by at least 45%. Analyses estimated significant effects of C. pseudomagnoliarum at densities less than 0.1 adults/branch or 1.0 nymph/leaf. These results suggest a decrease in the current threshold of 1.0 for adults/branch and may be warranted to minimize C. pseudomagnoliarum damage.


Subject(s)
Citrus sinensis , Citrus , Hemiptera , Insecticides , Animals , Fruit , Insecticides/pharmacology , Nymph
4.
J Econ Entomol ; 115(5): 1627-1636, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36000789

ABSTRACT

Cottony cushion scale, Icerya purchasi Maskell, is an occasional pest of citrus, especially when insecticides disrupt vedalia beetle, Novius cardinalis (Mulsant) (Coleoptera: Coccinellidae). In two field tests conducted in successive years, navel orange trees were artificially infested with I. purchasi to determine the impact of I. purchasi on fruit yield and quality. In the first year, for which adult scale densities ranged between 0 and > 45 per branch and between 0 and > 500 on trunk counts, there was a highly significant negative linear relationship between the number of I. purchasi adults on branches or the trunk and its effect on fruit number, the percentage of large fruit, and the mass of fruit, and a highly significant positive relationship for the percentage of sooty mold-affected fruit and the percentage of juice grade fruit. In the second year, in which adult scale densities ranged between 0 and 10.5 per branch and between 0 and 35 on trunk counts, only the percentage of sooty mold-affected fruit showed a relationship. Damage to fruit was better predicted by population estimates from branch samples versus trunk counts. Analysis of the two years, estimated significant damage ranging from 2 adults per branch to no detectable effects of insect density, depending on the given metric of fruit number or quality, at the time that treatment decisions would be made. These results support May-June monitoring of branches for adult scales and application of treatments at an action threshold of <2 adult females/branch to prevent damage to navel orange trees.


Subject(s)
Citrus sinensis , Citrus , Coleoptera , Hemiptera , Insecticides , Animals , Female , Fruit , Trees
5.
Front Insect Sci ; 2: 783285, 2022.
Article in English | MEDLINE | ID: mdl-38468763

ABSTRACT

Urban environments frequently play an important role in the initial stages of biological invasions, often serving as gateways for non-native species, which may propagate to nearby natural and agricultural ecosystems in the event of spillover. In California, citrus trees are a dominant ornamental and food plant in urban and peri-urban environments. We studied the invasion dynamics of the Asian citrus psyllid (Diaphorina citri), which became widespread in urban areas of southern California starting in 2008, to understand the factors driving its more recent invasion in commercial citrus groves. Using a multi-year monitoring database, we applied a suite of models to evaluate the rate at which groves accrued their first D. citri detection and the cumulative number of detections thereafter. Grove characteristics and landscape context proved to be important, with generally higher invasion rates and more cumulative detections in groves that were larger, had more edge, or had more perforated shapes, with greater urbanization intensity favoring more rapid invasion, but with inconsistent effects of distance to roads among models. Notably, distance to urban or other grove occurrences proved to be among the most important variables. During the early phase of D. citri invasion in the region, groves closer to urban occurrences were invaded more rapidly, whereas more recently, invasion rate depended primarily on proximity to grove occurrences. Yet, proximity to urban and grove occurrences contributed positively to cumulative D. citri detections, suggesting a continued influx from both sources. These results suggest that inherent features of agroecosystems and spatial coupling with urban ecosystems can be important, temporally dynamic, drivers of biological invasions. Further consideration of these issues may guide the development of strategic responses to D. citri's ongoing invasion.

6.
Environ Entomol ; 50(6): 1446-1454, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34396396

ABSTRACT

Although Aphrophora nr. permutata (Hemiptera: Aphrophoridae) is a reported vector of the plant pathogen Xylella fastidiosa (Wells) (Xanthomonadales: Xanthomonadaceae), its ecology and role in Pierce's disease dynamics in coastal California vineyards are poorly understood. From 2016 to 2020, we surveyed the abundance of A. nr. permutata nymphs among potential host plants along the vineyard floor, the vineyard edges, and adjacent vegetation in vineyards in Napa and Sonoma county. In 2019 and 2020, vineyards adjacent to woodland habitat hosted larger A. nr. permutata populations than those next to riparian habitat, while in 2017 and 2018, the nymphal populations were similar among riparian and woodland sites. Among 2020 plant cover taxa, nymph abundance was positively associated with Helminthotheca echioides, Vicia sativa, and Daucus carota cover and negatively associated with Taraxacum officinale cover. In 2018 and 2019, we also tracked early-season occurrence and development of A. nr. permutata nymphs among potential host plants. Analyses showed a significant effect of site, year, and plant taxa on the first detection of nymphs and a significant effect of site and year on the estimated development time between first and fifth instars. In 2019, we conducted grapevine to grapevine X. fastidiosa transmission experiments with individuals and groups of five A. nr. permutata adults. In the transmission experiment, 5% (3 of 60) individual A. nr. permutata and 7.7% (1 of 13) of groups successfully transmitted X. fastidiosa. This study provides preliminary evidence of potential host plant associations with A. nr. permutata abundance and phenology that should be explored further with field and greenhouse-based approaches.


Subject(s)
Hemiptera , Vitis , Xylella , Animals , Ecology , Farms , Nymph , Plant Diseases
7.
Environ Entomol ; 50(2): 467-476, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33399197

ABSTRACT

The meadow spittlebug, Philaenus spumarius (Linnaeus) (Hemiptera: Aphrophoridae), is a vector of the plant pathogen Xylella fastidiosa; however, its role in recent outbreaks of Pierce's disease of grapevine (PD) in California is unclear. While the phenology and ecology of P. spumarius can help determine its contributions to PD epidemics, both remain poorly described in the North Coast vineyards of California. We assessed the phenology of P. spumarius in the region. Spittlemasses were first observed in February or March, while the emergence of adult spittlebugs did not occur until April or May depending on the year. Analysis of sweep and trap data from 2016 to 2018 revealed significant effects of survey month, vineyard site, and year on adult abundance in sweep and trap surveys. Spittlebug adults were present in the vineyards from April until December, with the greatest number of adults by sweep net in May or June, whereas adults on traps peaked between July and November. Analysis of natural infectivity in groups of field-collected spittlebug adults showed significant difference in transmission rates among months. Spittlebugs successfully transmitted Xylella fastidiosa (Wells) (Xanthomonadales: Xanthomonadaceae) to potted grapevines between July and December. The greatest risk of X. fastidiosa transmission by P. spumarius was in December (60%) followed by October (30%). However, the infectivity patterns of the meadow spittlebug did not align with the historical paradigm of California North Coast PD. We discuss alternative hypotheses in which P. spumarius could play a role in the epidemiology of this disease.


Subject(s)
Hemiptera , Vitis , Xylella , Animals , California , Farms , Insect Vectors , Plant Diseases , Seasons
8.
Environ Entomol ; 50(1): 138-148, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33284962

ABSTRACT

The spread and impact of invasive species in exotic ranges can be mitigated by increased understanding of pest invasion dynamics. Here, we used geospatial analyses and habitat suitability modeling to characterize the invasion of an important vineyard pest, vine mealybug (Planococcus ficus Signoret, Hemiptera: Pseudococcidae), using nearly 15,000 trapping records from throughout Napa County, California, between 2012 and 2017. Spatial autocorrelation among P. ficus detections was strongest at distances of ~250 m and detectable at regional scales (up to 40 km), estimates of the rate and directionality of spread were highly idiosyncratic, and P. ficus detection hotspots were spatiotemporally dynamic. Generalized linear model, boosted regression tree, and random forest modeling methods performed well in predicting habitat suitability for P. ficus. The most important predictors of P. ficus occurrence were a positive effect of precipitation in the driest month, and negative effects of elevation and distance to nearest winery. Our results indicate that 250-m quarantine and treatment zones around P. ficus detections are likely sufficient to encompass most local establishment and spread, and that implementing localized regulatory procedures may limit inadvertent P. ficus spread via anthropogenic pathways. Finally, surveys of P. ficus presence at >300 vineyard sites validated that habitat suitability estimates were significantly and positively associated with P. ficus frequency of occurrence. Our findings indicate that habitat suitability predictions may offer a robust tool for identifying areas in the study region at risk to future P. ficus invasion and prioritizing locations for early detection and preventative management efforts.


Subject(s)
Ficus , Hemiptera , Animals , California , Farms , Spatial Analysis
9.
Phytopathology ; 109(2): 277-285, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30451633

ABSTRACT

For vector-borne plant pathogens, disease epidemics may be attributable to multiple mechanisms, including introduction of a novel vector whose epidemiological role differs from that of native vectors. In such cases, understanding an exotic vector's ability to drive an epidemic is central to mitigating its impact. We studied how the invasive glassy-winged sharpshooter (Homalodisca vitripennis Germar) can drive Pierce's disease outbreaks in vineyards, focusing on its potential to promote vine-to-vine (i.e., secondary) spread of Xylella fastidiosa relative to potential constraints stemming from seasonality in the pathosystem. First, we developed a general vector-borne disease model to understand the consequences for disease dynamics of (i) seasonal acquisition efficiency and (ii) seasonal host recovery from infection. Results of the modeling indicate that these two sources of seasonality could constrain disease incidence, particularly when working in concert. Next, we established a field cage experiment to determine whether H. vitripennis promotes vine-to-vine spread, and looked for evidence of seasonality in spread. Broadly, results from the experiment supported assumptions of the model; there was modest to significant increase in the frequency of pathogen spread over the first season, and those new infections that occurred later in the season were more likely to recover during winter. Ultimately, by the end of the second season, there was not evidence of significant secondary spread, likely due to a combination of seasonal constraints and low transmission efficiency by H. vitripennis. Collectively, these results suggest that, although H. vitripennis may be able to promote vine-to-vine spread in certain contexts, it may not be the key factor explaining its impact. Rather, the ability of H. vitripennis to drive epidemics is likely to be more directly related to its potential to reach higher population densities than native vectors.


Subject(s)
Epidemics , Hemiptera , Vitis , Xylella , Animals , Insect Vectors/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Xylella/genetics
10.
Environ Entomol ; 48(1): 114-121, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30566639

ABSTRACT

Co-occurring plant species can influence the extent of damage to each other by altering the activity or abundance of a shared herbivore. One mechanism by which neighboring host plants exacerbate damage to a focal host is if the neighbor amplifies herbivore populations. We studied the performance of a shared herbivore on a native and an invasive plant, to estimate how strongly the presence of the invasive plant increases local herbivore abundance-in a system in which highly asymmetric spillover herbivory may occur. Specifically, we conducted a series of greenhouse experiments that measured reproduction, development, and survival of the invasive stink bug Bagrada hilaris Burmeister on an invasive annual forb, Sahara mustard (Brassica tournefortii), or a native perennial shrub, four-winged saltbush (Atriplex canescens). All measured aspects of stink bug performance revealed consistently greater performance on Br. tournefortii. Indeed, A. canescens appears to be insufficient for Ba. hilaris to complete its development. Nonetheless, preliminary damage assessments found that both plant species were used as feeding hosts, putative feeding lesions were a more reliable indicator of herbivory than was the degree of yellowing, and higher Ba. hilaris abundance was generally associated with greater sublethal damage to A. canescens. Thus, A. canescens appears to be susceptible to Ba. hilaris herbivory, though more research is needed to assess fitness impacts of this novel herbivore. Our results indicate that differential herbivore performance among host plants may be an important contributor to observed patterns of abundance of a shared herbivore and spillover herbivory between plants.


Subject(s)
Atriplex , Brassica , Herbivory , Heteroptera/physiology , Introduced Species , Animals
11.
Environ Entomol ; 47(6): 1471-1478, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30247531

ABSTRACT

Pathogen spread by arthropod vectors is the outcome of pathogen-vector-plant interactions, as well as how these interactions are impacted by abiotic and biotic factors. While plant water stress impacts each component of the Pierce's disease pathosystem (Xylella fastidiosa Wells et al., insect vectors, and grapevines), the outcome of interactions in relation to pathogen spread is unknown. The objectives of this study were 1) to determine the role of plant water stress on vector acquisition and inoculation of X. fastidiosa under choice and no-choice conditions for source or recipient vines, and 2) to provide insights into the effects of vineyard irrigation regimes on spread of X. fastidiosa by using a host-vector epidemic model. Under no-choice conditions, pathogen acquisition increased as water stress increased in source plants, while inoculation was not affected by water status of recipient vines. Thus, under no-choice conditions, plant water stress increased transmission of X. fastidiosa. However, when vectors had a choice of an uninfected well-watered versus an infected water-stressed grapevine, transmission efficiency declined as water stress levels increased. While our experimental results produced wide uncertainty estimates, the epidemiological modeling suggested a non-linear relationship between water stress and pathogen spread: moderate water stress enhances pathogen spread but severe or no stress produce equivalent spread. In summary, both host plant condition and vector host preference interacted to determine transmission efficiency of X. fastidiosa.


Subject(s)
Insect Vectors , Vitis/microbiology , Water/physiology , Xylella , Agricultural Irrigation , Animals , Dehydration , Plant Diseases , Vitis/physiology
12.
Annu Rev Phytopathol ; 56: 181-202, 2018 08 25.
Article in English | MEDLINE | ID: mdl-29889627

ABSTRACT

The bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy. The current threat to Europe and the Mediterranean basin, as well as other world regions, has increased as multiple X. fastidiosa genotypes have now been detected in Italy, France, and Spain. Although X. fastidiosa has been studied in the Americas for more than a century, there are no therapeutic solutions to suppress disease development in infected plants. Furthermore, because X. fastidiosa is an obligatory plant and insect vector colonizer, the epidemiology and dynamics of each pathosystem are distinct. They depend on the ecological interplay of plant, pathogen, and vector and on how interactions are affected by biotic and abiotic factors, including anthropogenic activities and policy decisions. Our goal with this review is to stimulate discussion and novel research by contextualizing available knowledge on X. fastidiosa and how it may be applicable to emerging diseases.


Subject(s)
Insect Vectors/microbiology , Olea/microbiology , Plant Diseases/microbiology , Xylella/physiology , Animals , Host-Pathogen Interactions , Insect Vectors/physiology
13.
J Econ Entomol ; 111(4): 1542-1550, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29726945

ABSTRACT

Studies of spatiotemporal dynamics are central to efforts to characterize the epidemiology of infectious disease, such as mechanism of pathogen spread and pathogen or vector sources in the landscape, and are critical to the development of effective disease management programs. To that end, we conducted a multi-year study of 20 vineyard blocks in coastal northern California to relate the dynamics of a mealybug vector, Pseudococcus maritimus (Ehrhorn) (Hemiptera: Pseudococcidae), to incidence of grapevine leafroll disease (GLD). In each vineyard block, a subset of vines were scored visually for relative mealybug abundance, disease was quantified by visual assessment, and virus presence was verified using standard laboratory molecular assays. GLD incidence was analyzed with a classification and regression tree, and with a hierarchical model that also captured variability among blocks and heterogeneity within blocks. Both analyses found strong interannual variability in incidence, with the hierarchical model also capturing substantial between- and within-block heterogeneity, but with significant contributions of vector abundance and pathogen supply (prior disease incidence) to the frequency of newly diseased vines. These results strengthen further the conclusion that mealybug vectors are causally related to pathogen spread in this system and are therefore an important target for management. Moreover, they are consistent with relatively efficient secondary spread of the pathogen, suggesting an important role for the removal of diseased vines as a tool to mitigate further damage.


Subject(s)
Hemiptera , Vitis , Animals , California , Incidence
14.
G3 (Bethesda) ; 7(4): 1127-1136, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28159865

ABSTRACT

Testes-biased genes evolve rapidly and are important in the establishment, solidification, and maintenance of reproductive isolation between incipient species. The Anopheles gambiae complex, a group of at least eight isomorphic mosquito species endemic to Sub-Saharan Africa, is an excellent system to explore the evolution of testes-biased genes. Within this group, the testes are an important tissue in the diversification process because hybridization between species results in sterile hybrid males, but fully fertile females. We conducted RNA sequencing of A. gambiae and A. merus carcass and testes to explore tissue- and species-specific patterns of gene expression. Our data provides support for transcriptional repression of X-linked genes in the male germline, which likely drives demasculinization of the X chromosome. Testes-biased genes predominately function in cellular differentiation and show a number of interesting patterns indicative of their rapid evolution, including elevated dN/dS values, low evolutionary conservation, poor annotation in existing reference genomes, and a high likelihood of differential expression between species.


Subject(s)
Anopheles/genetics , Evolution, Molecular , Gene Expression Profiling , Genetic Linkage , Malaria/parasitology , Testis/metabolism , Animals , Down-Regulation/genetics , Gene Dosage , Genes, Insect , Genes, X-Linked , Male , Molecular Sequence Annotation , Organ Specificity/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic , X Chromosome/genetics , Y Chromosome/genetics
15.
Pest Manag Sci ; 73(3): 506-514, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27714916

ABSTRACT

BACKGROUND: Studies were conducted to evaluate uptake and retention of three systemic neonicotinoid insecticides, dinotefuran, imidacloprid and thiamethoxam, in potted citrus nursery plants treated at standard label rates. Infestation of these plants placed at a field site with moderate levels of Asian citrus psyllid (ACP) was monitored for 14 weeks following treatments, and insecticide residues in leaf tissue were quantified using enzyme-linked immunosorbent assay (ELISA). Bioassays were conducted using leaves harvested on various dates post-treatment to compare the efficacies of residues against adult ACP. RESULTS: Residues of the three neonicotinoids were detected in leaf tissues within 1 week after treatment. Peak concentrations established at 1 week for imidacloprid and dinotefuran and at 2 weeks for thiamethoxam. Imidacloprid and thiamethoxam outperformed the control and dinotefuran treatments at protecting trees from infestations by ACP eggs and nymphs. For a given insecticide concentration in leaf tissue, thiamethoxam induced the highest mortality of the three insecticides, and dinotefuran was the least toxic. CONCLUSION: If the time needed to achieve effective thresholds of a systemic neonicotinoid is known, treatments at production facilities could be scheduled that would minimize unnecessary post-treatment holding periods and ensure maximum retention of effective concentrations after the plants have shipped to retail outlets. The rapid uptake of the insecticides and retention at effective concentrations in containerized citrus suggest that the current 30 day post-treatment shipping restriction from production facilities to retail outlets outside of quarantine could be shortened to 14 days. Thiamethoxam should be added to the list of approved nursery treatments. © 2016 Society of Chemical Industry.


Subject(s)
Guanidines , Hemiptera , Imidazoles , Insect Control , Insecticides , Nitro Compounds , Oxazines , Thiazoles , Animals , Citrus/growth & development , Citrus/physiology , Enzyme-Linked Immunosorbent Assay , Hemiptera/growth & development , Neonicotinoids , Nymph , Ovum , Pesticide Residues/analysis , Plant Leaves/physiology , Thiamethoxam
16.
PLoS One ; 11(9): e0162777, 2016.
Article in English | MEDLINE | ID: mdl-27649564

ABSTRACT

Disturbance is a primary mechanism structuring ecological communities. However, human activity has the potential to alter the frequency and intensity of natural disturbance regimes, with subsequent effects on ecosystem processes. In Southern California, human development has led to increased fire frequency close to urban areas that can form a positive feedback with invasive plant spread. Understanding how abiotic and biotic factors structure post-fire plant communities is a critical component of post-fire management and restoration. In this study we considered a variety of mechanisms affecting post-fire vegetation recovery in Riversidean sage scrub. Comparing recently burned plots to unburned plots, we found that burning significantly reduced species richness and percent cover of exotic vegetation the first two years following a 100-hectare wildfire. Seed rain was higher in burned plots, with more native forb seeds, while unburned plots had more exotic grass seeds. Moreover, there were significant correlations between seed rain composition and plant cover composition the year prior and the year after. Collectively, this case study suggests that fire can alter community composition, but there was not compelling evidence of a vegetation-type conversion. Instead, the changes in the community composition were temporary and convergence in community composition was apparent within two years post-fire.


Subject(s)
Asteraceae/growth & development , Conservation of Natural Resources/methods , Ecosystem , Fires , Polygonaceae/growth & development , Salvia/growth & development , California , Geography , Human Activities , Humans , Introduced Species , Plant Development , Poaceae/growth & development , Seeds/growth & development , Species Specificity , Time Factors
17.
PLoS One ; 9(3): e90410, 2014.
Article in English | MEDLINE | ID: mdl-24614821

ABSTRACT

In any insect invasion the presence or absence of suitable food and oviposition hosts in the invaded range is a key factor determining establishment success. The glassy-winged sharpshooter, Homalodisca vitripennis, is an important insect vector of the xylem-limited bacterial plant pathogen, Xylella fastidiosa, which causes disease in numerous host plants including food and feedstock crops, ornamentals and weeds. Both the pathogen and the vector are native to the Americas and are considered to be highly invasive. Neither has been detected in Australia. Twelve Australian native plant species present in the USA were observed over two years for suitability as H. vitripennis feeding, oviposition and nymph development hosts. Hosts providing evidence of adult or nymph presence were Leptospermum laevigatum, Acacia cowleana, Eremophila divaricata, Eucalyptus wandoo, Hakea laurina, Melaleuca laterita and Swainsona galegifolia. An oviposition-suitability field study was conducted with citrus, a favoured oviposition host, as a positive control. Citrus and L. laevigatum, A. cowleana, B. ericifolia×B. spinulosa, C. pulchella, E. divaricata, E. wandoo, H. laurina, and S. galegifolia were found to be oviposition hosts. Egg parasitism by the mymarid parasitoid Gonatocerus ashmeadi was observed on all Australian plants. A number of Australian plants that may facilitate H. vitripennis invasion have been identified and categorised as 'high risk' due to their ability to support all three life stages (egg, nymph and adult) of the insect in the field (L. laevigatum, A. cowleana, E. divaricata, H. laurina, and S. galegifolia). The implications of these host status and natural enemy research findings are discussed and placed in an Australian invasion context.


Subject(s)
Feeding Behavior , Hemiptera/physiology , Introduced Species , Plants/parasitology , Animals , Australia , Choice Behavior , Host-Parasite Interactions , Larva/physiology , Life Cycle Stages , Ovum/growth & development , Surveys and Questionnaires , Wings, Animal
18.
Phytopathology ; 104(4): 416-21, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24620723

ABSTRACT

Over the last decade, the plant disease huanglongbing (HLB) has emerged as a primary threat to citrus production worldwide. HLB is associated with infection by phloem-limited bacteria ('Candidatus Liberibacter' spp.) that are transmitted by the Asian citrus psyllid, Diaphorina citri. Transmission efficiency varies with vector-related aspects (e.g., developmental stage and feeding periods) but there is no information on the effects of host-pathogen interactions. Here, acquisition efficiency of 'Candidatus Liberibacter asiaticus' by D. citri was evaluated in relation to temporal progression of infection and pathogen titer in citrus. We graft inoculated sweet orange trees with 'Ca. L. asiaticus'; then, at different times after inoculation, we inspected plants for HLB symptoms, measured bacterial infection levels (i.e., titer or concentration) in plants, and measured acquisition by psyllid adults that were confined on the trees. Plant infection levels increased rapidly over time, saturating at uniformly high levels (≈10(8) copy number of 16S ribosomal DNA/g of plant tissue) near 200 days after inoculation-the same time at which all infected trees first showed disease symptoms. Pathogen acquisition by vectors was positively associated with plant infection level and time since inoculation, with acquisition occurring as early as the first measurement, at 60 days after inoculation. These results suggest that there is ample potential for psyllids to acquire the pathogen from trees during the asymptomatic phase of infection. If so, this could limit the effectiveness of tree rouging as a disease management tool and would likely explain the rapid spread observed for this disease in the field.


Subject(s)
Citrus/microbiology , Hemiptera/microbiology , Insect Vectors/microbiology , Models, Statistical , Plant Diseases/microbiology , Rhizobiaceae/isolation & purification , Animals , Citrus/parasitology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Host-Pathogen Interactions , Plant Diseases/statistics & numerical data , Plant Leaves/microbiology , Plant Shoots/microbiology , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Rhizobiaceae/classification , Rhizobiaceae/genetics , Trees
19.
PLoS One ; 8(2): e55326, 2013.
Article in English | MEDLINE | ID: mdl-23424629

ABSTRACT

Understanding the interactions between pathogen, crop and vector are necessary for the development of disease control practices of vector-borne pathogens. For instance, resistant plant genotypes can help constrain disease symptoms due to infections and limit pathogen spread by vectors. On the other hand, genotypes susceptible to infection may increase pathogen spread owing to their greater pathogen quantity, regardless of their symptom status. In this study, we evaluated under greenhouse conditions the relative levels of resistance (i.e. relatively lower pathogen quantity) versus tolerance (i.e. less symptom severity) of 10 commercial grapevine (Vitis vinifera) cultivars to Pierce's disease etiological agent, the bacterium Xylella fastidiosa. Overall, no correlation was detected between pathogen quantity and disease severity, indicating the existence of among-cultivar variation in plant response to infection. Thompson Seedless and Barbera were the two most susceptible among 10 evaluated cultivars. Rubired showed the least severe disease symptoms and was categorized as one of the most resistant genotypes in this study. However, within each cultivar the degree of resistance/tolerance was not consistent across sampling dates. These cultivar and temporal differences in susceptibility to infection may have important consequences for disease epidemiology and the effectiveness of management protocols.


Subject(s)
Disease Vectors , Plant Diseases/microbiology , Vitis/growth & development , Vitis/microbiology , Xylella/physiology , Animals , Disease Resistance , Disease Susceptibility , Time Factors , Vitis/immunology
20.
Exp Appl Acarol ; 53(4): 311-22, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21053057

ABSTRACT

Population dynamics models suggest that both the over-all level of resource productivity and spatial variability in productivity can play important roles in community dynamics. Higher productivity environments are predicted to destabilize consumer-resource dynamics. Conversely, greater heterogeneity in resource productivity is expected to contribute to stability. Yet the importance of these two factors for the dynamics of arthropod communities has been largely overlooked. I manipulated nutrient availability for strawberry plants in a multi-patch experiment, and measured effects of overall plant quality and heterogeneity in plant quality on the stability of interactions between the phytophagous mite Tetranychus urticae and its predator Phytoseiulus persimilis. Plant size, leaf N content and T. urticae population growth increased monotonically with increasing soil nitrogen availability. This gradient in plant quality affected two correlates of mite population stability, population variability over time (i.e., coefficient of variation) and population persistence (i.e., proportion of plant patches colonized). However, the highest level of plant quality did not produce the least stable dynamics, which is inconsistent with the "paradox of enrichment". Heterogeneity in plant productivity had modest effects on stability, with the only significant difference being less variable T. urticae densities in the heterogeneous compared to the corresponding homogeneous treatment. These results are generally congruent with metapopulation theory and other models for spatially segregated populations, which predict that stability should be governed largely by relative movement rates of predators and prey--rather than patch quality.


Subject(s)
Mites/physiology , Predatory Behavior , Animals , Environment , Fragaria/anatomy & histology , Fragaria/metabolism , Population Density , Population Dynamics , Tetranychidae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...