Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 11(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35161327

ABSTRACT

The French National Research Institute for Agriculture, Food and the Environment (INRAE) conserves and distributes five vegetable collections as seeds: the aubergine* (in this article the word aubergine refers to eggplant), pepper, tomato, melon and lettuce collections, together with their wild or cultivated relatives, are conserved in Avignon, France. Accessions from the collections have geographically diverse origins, are generally well-described and fixed for traits of agronomic or scientific interest and have available passport data. In addition to currently conserving over 10,000 accessions (between 900 and 3000 accessions per crop), the centre maintains scientific collections such as core collections and bi- or multi-parental populations, which have also been genotyped with SNP markers. Each collection has its own merits and highlights, which are discussed in this review: the aubergine collection is a rich source of crop wild relatives of Solanum; the pepper, melon and lettuce collections have been screened for resistance to plant pathogens, including viruses, fungi, oomycetes and insects; and the tomato collection has been at the heart of genome-wide association studies for fruit quality traits and environmental stress tolerance.

2.
Mol Plant Pathol ; 19(11): 2459-2472, 2018 11.
Article in English | MEDLINE | ID: mdl-30073750

ABSTRACT

To deploy durable plant resistance, we must understand its underlying molecular mechanisms. Type III effectors (T3Es) and their recognition play a central role in the interaction between bacterial pathogens and crops. We demonstrate that the Ralstonia solanacearum species complex (RSSC) T3E ripAX2 triggers specific resistance in eggplant AG91-25, which carries the major resistance locus EBWR9. The eggplant accession AG91-25 is resistant to the wild-type R. pseudosolanacearum strain GMI1000, whereas a ripAX2 defective mutant of this strain can cause wilt. Notably, the addition of ripAX2 from GMI1000 to PSS4 suppresses wilt development, demonstrating that RipAX2 is an elicitor of AG91-25 resistance. RipAX2 has been shown previously to induce effector-triggered immunity (ETI) in the wild relative eggplant Solanum torvum, and its putative zinc (Zn)-binding motif (HELIH) is critical for ETI. We show that, in our model, the HELIH motif is not necessary for ETI on AG91-25 eggplant. The ripAX2 gene was present in 68.1% of 91 screened RSSC strains, but in only 31.1% of a 74-genome collection comprising R. solanacearum and R. syzygii strains. Overall, it is preferentially associated with R. pseudosolanacearum phylotype I. RipAX2GMI1000 appears to be the dominant allele, prevalent in both R. pseudosolanacearum and R. solanacearum, suggesting that the deployment of AG91-25 resistance could control efficiently bacterial wilt in the Asian, African and American tropics. This study advances the understanding of the interaction between RipAX2 and the resistance genes at the EBWR9 locus, and paves the way for both functional genetics and evolutionary analyses.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems , Disease Resistance , Ecotype , Plant Diseases/microbiology , Ralstonia solanacearum/physiology , Solanum melongena/immunology , Solanum melongena/microbiology , Amino Acid Sequence , Bacterial Proteins/chemistry , Conserved Sequence , Genetic Complementation Test , Phylogeny , Plant Immunity , Plant Roots/microbiology , Protein Domains , Ralstonia solanacearum/growth & development , Ralstonia solanacearum/pathogenicity , Virulence , Zinc Fingers
3.
Int J Mol Sci ; 19(2)2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29370090

ABSTRACT

Eggplant cultivation is limited by numerous diseases, including the devastating bacterial wilt (BW) caused by the Ralstonia solanacearum species complex (RSSC). Within the RSSC, Ralstonia pseudosolanacearum (including phylotypes I and III) causes severe damage to all solanaceous crops, including eggplant. Therefore, the creation of cultivars resistant to R. pseudosolanacearum strains is a major goal for breeders. An intraspecific eggplant population, segregating for resistance, was created from the cross between the susceptible MM738 and the resistant EG203 lines. The population of 123 doubled haploid lines was challenged with two strains belonging to phylotypes I (PSS4) and III (R3598), which both bypass the published EBWR9 BW-resistance quantitative trait locus (QTL). Ten and three QTLs of resistance to PSS4 and to R3598, respectively, were detected and mapped. All were strongly influenced by environmental conditions. The most stable QTLs were found on chromosomes 3 and 6. Given their estimated physical position, these newly detected QTLs are putatively syntenic with BW-resistance QTLs in tomato. In particular, the QTLs' position on chromosome 6 overlaps with that of the major broad-spectrum tomato resistance QTL Bwr-6. The present study is a first step towards understanding the complex polygenic system, which underlies the high level of BW resistance of the EG203 line.


Subject(s)
Disease Resistance/genetics , Genotype , Multifactorial Inheritance , Quantitative Trait Loci , Solanum melongena/genetics , Chromosomes, Plant/genetics , Genome, Plant , Ploidies , Ralstonia/pathogenicity , Solanum melongena/immunology , Solanum melongena/microbiology
4.
Front Plant Sci ; 8: 828, 2017.
Article in English | MEDLINE | ID: mdl-28580001

ABSTRACT

Bacterial wilt (BW) is a major disease of solanaceous crops caused by the Ralstonia solanacearum species complex (RSSC). Strains are grouped into five phylotypes (I, IIA, IIB, III, and IV). Varietal resistance is the most sustainable strategy for managing BW. Nevertheless, breeding to improve cultivar resistance has been limited by the pathogen's extensive genetic diversity. Identifying the genetic bases of specific and non-specific resistance is a prerequisite to breed improvement. A major gene (ERs1) was previously mapped in eggplant (Solanum melongena L.) using an intraspecific population of recombinant inbred lines derived from the cross of susceptible MM738 (S) × resistant AG91-25 (R). ERs1 was originally found to control three strains from phylotype I, while being totally ineffective against a virulent strain from the same phylotype. We tested this population against four additional RSSC strains, representing phylotypes I, IIA, IIB, and III in order to clarify the action spectrum of ERs1. We recorded wilting symptoms and bacterial stem colonization under controlled artificial inoculation. We constructed a high-density genetic map of the population using single nucleotide polymorphisms (SNPs) developed from genotyping-by-sequencing and added 168 molecular markers [amplified fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs), and sequence-related amplified polymorphisms (SRAPs)] developed previously. The new linkage map based on a total of 1,035 markers was anchored on eggplant, tomato, and potato genomes. Quantitative trait locus (QTL) mapping for resistance against a total of eight RSSC strains resulted in the detection of one major phylotype-specific QTL and two broad-spectrum QTLs. The major QTL, which specifically controls three phylotype I strains, was located at the bottom of chromosome 9 and corresponded to the previously identified major gene ERs1. Five candidate R-genes were underlying this QTL, with different alleles between the parents. The two other QTLs detected on chromosomes 2 and 5 were found to be associated with partial resistance to strains of phylotypes I, IIA, III and strains of phylotypes IIA and III, respectively. Markers closely linked to these three QTLs will be crucial for breeding eggplant with broad-spectrum resistance to BW. Furthermore, our study provides an important contribution to the molecular characterization of ERs1, which was initially considered to be a major resistance gene.

5.
Am J Bot ; 103(4): 635-51, 2016 04.
Article in English | MEDLINE | ID: mdl-27026215

ABSTRACT

PREMISE OF THE STUDY: Crop wild relatives (CWR) provide important traits for plant breeding, including pest, pathogen, and abiotic stress resistance. Therefore, their conservation and future availability are essential for food security. Despite this need, the world's genebanks are currently thought to conserve only a small fraction of the total diversity of CWR. METHODS: We define the eggplant genepool using the results of recent taxonomic and phylogenetic studies. We identify the gaps in germplasm accessions for eggplant (Solanum melongena L.) CWR by comparing georeferenced herbarium records and germplasm accessions using a gap analysis methodology implementing species distribution models (SDM). Preliminary conservation assessments using IUCN criteria were done for all species and were combined with the gap analysis to pinpoint where under-collected and threatened CWR species coincide with high human disturbance and occur outside of protected areas. KEY RESULTS: We show that many eggplant CWR are poorly represented in genebanks compared to their native ranges. Priority areas for future collecting are concentrated in Africa, especially along the Kenya-Tanzania border. Fourteen species of eggplant CWR are assessed as threatened or near-threatened; these are also concentrated in eastern Africa. CONCLUSIONS: The knowledge base upon which conservation of wild relative germplasm depends must take into account both taxonomic and phylogenetic advances. Beyond traditional research focus on close relatives of crops, we emphasize the benefits of defining a broad CWR genepool, and the importance of assessing threats to wild species when targeting localities for future collection of CWR to improve crop breeding in the face of environmental change.


Subject(s)
Crops, Agricultural/genetics , Crops, Agricultural/physiology , Extinction, Biological , Gene Pool , Solanum melongena/genetics , Solanum melongena/physiology , Africa, Eastern , Conservation of Natural Resources , Geography , Risk , Species Specificity
6.
Phytopathology ; 105(5): 597-607, 2015 May.
Article in English | MEDLINE | ID: mdl-25710204

ABSTRACT

Phylogeographic studies inform about routes of pathogen dissemination and are instrumental for improving import/export controls. Genomes of 17 isolates of the bacterial wilt and potato brown rot pathogen Ralstonia solanacearum race 3 biovar 2 (R3bv2), a Select Agent in the United States, were thus analyzed to get insight into the phylogeography of this pathogen. Thirteen of fourteen isolates from Europe, Africa, and Asia were found to belong to a single clonal lineage while isolates from South America were genetically diverse and tended to carry ancestral alleles at the analyzed genomic loci consistent with a South American origin of R3bv2. The R3bv2 isolates share a core repertoire of 31 type III-secreted effector genes representing excellent candidates to be targeted with resistance genes in breeding programs to develop durable disease resistance. Toward this goal, 27 R3bv2 effectors were tested in eggplant, tomato, pepper, tobacco, and lettuce for induction of a hypersensitive-like response indicative of recognition by cognate resistance receptors. Fifteen effectors, eight of them core effectors, triggered a response in one or more plant species. These genotypes may harbor resistance genes that could be identified and mapped, cloned, and expressed in tomato or potato, for which sources of genetic resistance to R3bv2 are extremely limited.


Subject(s)
Genomics , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Solanum tuberosum/microbiology , Africa , Asia , Capsicum/immunology , Capsicum/microbiology , Disease Resistance , Europe , Genetic Variation , Lactuca/immunology , Lactuca/microbiology , Solanum lycopersicum/immunology , Solanum lycopersicum/microbiology , Phylogeography , Plant Diseases/immunology , Ralstonia solanacearum/pathogenicity , Solanum melongena/genetics , Solanum melongena/immunology , Solanum tuberosum/immunology , South America , Virulence
7.
Am J Bot ; 102(1): 129-39, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25587155

ABSTRACT

UNLABELLED: • PREMISE OF THE STUDY: In India and elsewhere, transgenic Bt eggplant (Solanum melongena) has been developed to reduce insect herbivore damage, but published studies of the potential for pollen-mediated, crop- to- wild gene flow are scant. This information is useful for risk assessments as well as in situ conservation strategies for wild germplasm.• METHODS: In 2010-2014, we surveyed 23 populations of wild/weedy eggplant (Solanum insanum; known as wild brinjal), carried out hand-pollination experiments, and observed pollinators to assess the potential for crop- to- wild gene flow in southern India.• KEY RESULTS: Wild brinjal is a spiny, low-growing perennial commonly found in disturbed sites such as roadsides, wastelands, and sparsely vegetated areas near villages and agricultural fields. Fourteen of the 23 wild populations in our study occurred within 0.5 km of cultivated brinjal and at least nine flowered in synchrony with the crop. Hand crosses between wild and cultivated brinjal resulted in seed set and viable F1 progeny. Wild brinjal flowers that were bagged to exclude pollinators did not set fruit, and fruit set from manual self-pollination was low. The exserted stigmas of wild brinjal are likely to promote outcrossing. The most effective pollinators appeared to be bees (Amegilla, Xylocopa, Nomia, and Heterotrigona spp.), which also were observed foraging for pollen on crop brinjal.• CONCLUSION: Our findings suggest that hybridization is possible between cultivated and wild brinjal in southern India. Thus, as part of the risk assessment process, we assume that transgenes from the crop could spread to wild brinjal populations that occur nearby.


Subject(s)
Crops, Agricultural/genetics , Genetic Variation , Hybridization, Genetic , Solanum melongena/genetics , India , Microsatellite Repeats
8.
Am J Bot ; 102(1): 140-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25587156

ABSTRACT

UNLABELLED: • PREMISE OF THE STUDY: Crop wild relatives represent important genetic resources for crop improvement and the preservation of native biodiversity. Eggplant (Solanum melongena), known as brinjal in India, ranks high among crops whose wild gene pools are underrepresented in ex situ collections and warrant urgent conservation. Knowledge of outcrossing rates and patterns of genetic variation among wild populations can aid in designing strategies for both in situ and ex situ preservation.• METHODS: We used 14 microsatellite (simple sequence repeat) markers to examine genetic diversity, population structure, and outcrossing in 10 natural populations of wild/weedy eggplant (S. insanum = S. melongena var. insanum) and three cultivated populations in southern India.• KEY RESULTS: Multilocus FST analyses revealed strong differentiation among populations and significant isolation by distance. Bayesian model-based clustering, principal coordinate analysis, and hierarchical cluster analysis grouped the wild/weedy populations into three major clusters, largely according to their geographic origin. The three crop populations were similar to each other and grouped with two wild/weedy populations that occurred nearby. Outcrossing rates among the wild/weedy populations ranged from 5-33%, indicating a variable mixed-mating system.• CONCLUSION: Geographic isolation has played a significant role in shaping the contemporary patterns of genetic differentiation among these populations, many of which represent excellent candidates for in situ conservation. In two cases, close genetic affinity between cultivars and nearby wild/weedy populations suggests that gene flow has occurred between them. To our knowledge, this is the first study investigating population-level patterns of genetic diversity in wild relatives of eggplant.


Subject(s)
Conservation of Natural Resources , Genetic Variation , Hybridization, Genetic , Solanum melongena/genetics , India , Microsatellite Repeats
9.
Ann Bot ; 112(5): 867-79, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23904443

ABSTRACT

BACKGROUND AND AIMS: The watermelon, Citrullus lanatus (Cucurbitaceae), is an important fruit vegetable in the warmer regions of the world. Watermelons were illustrated in Mediterranean Antiquity, but not as frequently as some other cucurbits. Little is known concerning the watermelons of Mediterranean Europe during medieval times. With the objective of obtaining an improved understanding of watermelon history and diversity in this region, medieval drawings purportedly of watermelons were collected, examined and compared for originality, detail and accuracy. FINDINGS: The oldest manuscript found that contains an accurate, informative image of watermelon is the Tractatus de herbis, British Library ms. Egerton 747, which was produced in southern Italy, around the year 1300. A dozen more original illustrations were found, most of them from Italy, produced during the ensuing two centuries that can be positively identified as watermelon. In most herbal-type manuscripts, the foliage is depicted realistically, the plants shown as having long internodes, alternate leaves with pinnatifid leaf laminae, and the fruits are small, round and striped. The manuscript that contains the most detailed and accurate image of watermelon is the Carrara Herbal, British Library ms. Egerton 2020. In the agriculture-based manuscripts, the foliage, if depicted, is not accurate, but variation in the size, shape and coloration of the fruits is evident. Both red-flesh and white-flesh watermelons are illustrated, corresponding to the typical sweet dessert watermelons so common today and the insipid citron watermelons, respectively. The variation in watermelon fruit size, shape and coloration depicted in the illustrations indicates that at least six cultivars of watermelon are represented, three of which probably had red, sweet flesh and three of which appear to have been citrons. Evidently, citron watermelons were more common in Mediterranean Europe in the past than they are today.


Subject(s)
Books, Illustrated/history , Citrullus , Crops, Agricultural/history , Europe , History, Medieval , Italy , Mediterranean Region
10.
Ann Bot ; 109(1): 117-26, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22104164

ABSTRACT

BACKGROUND: The cucumber, Cucumis sativus, is one of the most widely consumed fruit vegetables the world over. The history of its dispersal to the Occident from its centre of origin, the Indian subcontinent, has been incorrectly understood for some time, due to the confusion of cucumbers with vegetable melons. Iconographic and literary evidence has shown that cucumber was absent in Roman times, up to 500 CE, but present in Europe by late medieval times, 1300. The objective of the present investigation was to determine more accurately when the cucumber arrived in Europe and by what route. FINDINGS AND CONCLUSIONS: The evidence for the movement of C. sativus westward is entirely lexicographical until the 10th century. Syriac, Persian and Byzantine Greek sources suggest the presence of cucumbers, to the east and north-east of the Mediterranean Sea (modern Iran, Iraq and Turkey), by the 6th or 7th century. Arabic medical writings suggest the presence of cucumbers in Spain as early as the mid-9th century and in Tunisia by the early 10th century. Descriptive evidence in Arabic establishes the presence of cucumbers in Andalusia by the second half of the 10th century. Latin translations from Arabic sources indicate the presence of cucumbers in southern Italy by the second half of the 11th century. These writings, together with lexicographical discrepancies in names of cucurbits in late medieval Latin writings, suggest that cucumber was introduced to Europe by two independent diffusions. One diffusion appears to have been overland from Persia into eastern and northern Europe and preceded the Islamic conquests. The other, subsequent diffusion into western and southern Europe, was probably by a mostly maritime route from Persia or the Indian subcontinent into Andalusia.


Subject(s)
Crops, Agricultural/genetics , Crops, Agricultural/history , Cucumis sativus/genetics , Europe , Evolution, Molecular , History, 15th Century , History, Medieval , India , Phylogeography
11.
Ann Bot ; 108(3): 471-84, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21798859

ABSTRACT

BACKGROUND: The genus Cucumis contains two species of important vegetable crops, C. sativus, cucumber, and C. melo, melon. Melon has iconographical and textual records from lands of the Mediterranean Basin dating back to antiquity, but cucumber does not. The goal of this study was to obtain an improved understanding of the history of these crops in the Occident. Medieval images purportedly of Cucumis were examined, their specific identity was determined and they were compared for originality, accuracy and the lexicography of their captions. FINDINGS: The manuscripts having accurate, informative images are derived from Italy and France and were produced between 1300 and 1458. All have an illustration of cucumber but not all contain an image of melon. The cucumber fruits are green, unevenly cylindrical with an approx. 2:1 length-to-width ratio. Most of the images show the cucumbers marked by sparsely distributed, large dark dots, but images from northern France show them as having densely distributed, small black dots. The different size, colour and distribution reflect the different surface wartiness and spininess of modern American and French pickling cucumbers. The melon fruits are green, oval to serpentine, closely resembling the chate and snake vegetable melons, but not sweet melons. In nearly all manuscripts of Italian provenance, the cucumber image is labelled with the Latin caption citruli, or similar, plural diminuitive of citrus (citron, Citrus medica). However, in manuscripts of French provenance, the cucumber image is labelled cucumeres, which is derived from the classical Latin epithet cucumis for snake melon. The absence of melon in some manuscripts and the expropriation of the Latin cucumis/cucumer indicate replacement of vegetable melons by cucumbers during the medieval period in Europe. One image, from British Library ms. Sloane 4016, has a caption that allows tracing of the word 'gherkin' back to languages of the geographical nativity of C. sativus, the Indian subcontinent.


Subject(s)
Books, Illustrated/history , Crops, Agricultural/history , Cucumis melo , Cucumis sativus , Europe , Herbal Medicine/history , History, 15th Century , History, Medieval
12.
Ann Bot ; 103(8): 1187-205, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19318382

ABSTRACT

BACKGROUND AND AIMS: Beginning in the last two decades of the 14th century, richly illuminated versions of the Tacuinum Sanitatis, the Latin translation of an 11th-century Arabic manuscript known as Taqwim al-Sihha bi al-Ashab al-Sitta, were produced in northern Italy. These illustrated manuscripts provide a window on late medieval life in that region by containing some 200 full-page illustrations, many of which vividly depict the harvest of vegetables, fruits, flowers, grains, aromatics and medicinal plants. Our objective was to search for and identify the images of taxa of Cucurbitaceae and Solanaceae. METHODS: We have located all reported illustrated Tacuinum Sanitatis and similar or related manuscripts, searched through printed or electronic reproductions of them, categorized six of them that display full-page illustrations as archetypic, and established the identity of the Cucurbitaceae and Solanaceae appearing in these six manuscripts. KEY RESULTS AND CONCLUSIONS: Of the Cucurbitaceae, Cucumis sativus (short-fruited cucumbers), Cucumis melo (including round as well as elongate melons), Citrullus lanatus (both sweet watermelons and citrons), and Lagenaria siceraria (including bottle-shaped as well as long gourds), are illustrated. Of the Solanaceae, Solanum melongena (egg-shaped purple aubergines) and Mandragora sp. (mandrake) are illustrated. These depictions include some of the earliest known images of cucumber, casaba melon (Cucumis melo Inodorous Group) and aubergine, each of which closely resembles an extant cultivar-group or market type. Overall, the botanically most accurate images are in the version of the Tacuinum located in the Osterreichische Nationalbibliothek, Vienna, cod. ser. n. 2644. Similarities and differences in botanical accuracy among the images of Cucurbitaceae and Solanaceae in the six archetypal Tacuinum manuscripts suggest to us that another illustrated Tacuinum, now lost, may have antedated and served as a model or inspiration for the six surviving archetypic manuscripts.


Subject(s)
Books , Cucurbitaceae , Solanaceae , Italy
13.
Ann Bot ; 98(1): 41-7, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16687431

ABSTRACT

BACKGROUND: The genus Cucurbita (pumpkin, squash, gourd) is native to the Americas and diffused to other continents subsequent to the European contact in 1492. For many years, the earliest images of this genus in Europe that were known to cucurbit specialists were the two illustrations of C. pepo pumpkins that were published in Fuchs' De Historia Stirpium, 1542. Images of fruits of two Cucurbita species, drawn between 1515 and 1518, were recently discovered in the Villa Farnesina in Rome. FINDINGS: An even earlier image of Cucurbita exists in the prayer book, Grandes Heures d'Anne de Bretagne, illustrated by Jean Bourdichon in Touraine, France, between 1503 and 1508. This image, which shows a living branch bearing flowers and fruits, had not been examined and analysed by cucurbit specialists until now. The image is identified as depicting Cucurbita pepo subsp. texana. Unlike some of the fruits of Cucurbita depicted in the Villa Farnesina a decade later, this image does not depict an esculent and does not constitute evidence of early European contact with New World agriculture. Based on the descriptive, ecological and geographical accounts of C. pepo subsp. texana in the wild, the idea is considered that the image was based on an offspring of a plant found growing along the Gulf Coast of what is now the United States.


Subject(s)
Books, Illustrated/history , Botany/history , Cucurbita/classification , Paintings/history , Cucurbita/anatomy & histology , France , History, 16th Century
14.
Genetics ; 161(4): 1697-711, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12196412

ABSTRACT

A molecular genetic linkage map based on tomato cDNA, genomic DNA, and EST markers was constructed for eggplant, Solanum melongena. The map consists of 12 linkage groups, spans 1480 cM, and contains 233 markers. Comparison of the eggplant and tomato maps revealed conservation of large tracts of colinear markers, a common feature of genome evolution in the Solanaceae and other plant families. Overall, eggplant and tomato were differentiated by 28 rearrangements, which could be explained by 23 paracentric inversions and five translocations during evolution from the species' last common ancestor. No pericentric inversions were detected. Thus, it appears that paracentric inversion has been the primary mechanism for chromosome evolution in the Solanaceae. Comparison of relative distributions of the types of rearrangements that distinguish pairs of solanaceous species also indicates that the frequency of different chromosomal structural changes was not constant over evolutionary time. On the basis of the number of chromosomal disruptions and an approximate divergence time for Solanum, approximately 0.19 rearrangements per chromosome per million years occurred during the evolution of eggplant and tomato from their last ancestor. This result suggests that genomes in Solanaceae, or at least in Solanum, are evolving at a moderate pace compared to other plant species.


Subject(s)
Biological Evolution , Chromosome Mapping , Solanum melongena/genetics , Chromosomes , Genetic Markers , Genome, Plant , Solanaceae/genetics
15.
Genetics ; 161(4): 1713-26, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12196413

ABSTRACT

Quantitative trait loci (QTL) for domestication-related traits were identified in an interspecific F(2) population of eggplant (Solanum linnaeanum x S. melongena). Although 62 quantitative trait loci (QTL) were identified in two locations, most of the dramatic phenotypic differences in fruit weight, shape, color, and plant prickliness that distinguish cultivated eggplant from its wild relative could be attributed to six loci with major effects. Comparison of the genomic locations of the eggplant fruit weight, fruit shape, and color QTL with the positions of similar loci in tomato, potato, and pepper revealed that 40% of the different loci have putative orthologous counterparts in at least one of these other crop species. Overall, the results suggest that domestication of the Solanaceae has been driven by mutations in a very limited number of target loci with major phenotypic effects, that selection pressures were exerted on the same loci despite the crops' independent domestications on different continents, and that the morphological diversity of these four crops can be explained by divergent mutations at these loci.


Subject(s)
Chromosome Mapping , Solanum melongena/genetics , Quantitative Trait Loci , Solanaceae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...