Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37372992

ABSTRACT

Vitamin B9 (folate)/B12 (cobalamin) deficiency is known to induce brain structural and/or functional retardations. In many countries, folate supplementation, targeting the most severe outcomes such as neural tube defects, is discontinued after the first trimester. However, adverse effects may occur after birth because of some mild misregulations. Various hormonal receptors were shown to be deregulated in brain tissue under these conditions. The glucocorticoid receptor (GR) is particularly sensitive to epigenetic regulation and post-translational modifications. In a mother-offspring rat model of vitamin B9/B12 deficiency, we investigated whether a prolonged folate supplementation could restore the GR signaling in the hypothalamus. Our data showed that a deficiency of folate and vitamin B12 during the in-utero and early postnatal periods was associated with reduced GR expression in the hypothalamus. We also described for the first time a novel post-translational modification of GR that impaired ligand binding and GR activation, leading to decrease expression of one of the GR targets in the hypothalamus, AgRP. Moreover, this brain-impaired GR signaling pathway was associated with behavioral perturbations during offspring growth. Importantly, perinatal and postnatal supplementation with folic acid helped restore GR mRNA levels and activity in hypothalamus cells and improved behavioral deficits.


Subject(s)
Folic Acid , Vitamin B 12 Deficiency , Pregnancy , Female , Animals , Rats , Folic Acid/pharmacology , Receptors, Glucocorticoid/genetics , Glucocorticoids , Epigenesis, Genetic , Dietary Supplements , Vitamin B 12/pharmacology , Hypothalamus
2.
Mol Neurobiol ; 58(3): 1024-1035, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33078371

ABSTRACT

Cobalamin (Cbl, vitamin B12) deficiency or inborn errors of Cbl metabolism can produce neurologic disorders resistant to therapies, including cognitive dysfunction, mild mental retardation, memory impairment, and confusion. We used Cd320 KO mouse as a model for studying the pathological mechanisms of these disorders. Cd320 encodes the receptor (TCblR) needed for the cellular uptake of Cbl in the brain. The Cd320-/- mouse model presented an impaired learning memory that could be alleviated by a moderate stress, which produced also a greater increase of plasma corticosterone, compared to wild type animals. The present study investigated such a putative rescue mechanism in Cbl-deficient mice. At the molecular level in the brain of Cd320-/- mouse, the decreased methylation status led to a downregulation of glucocorticoid nuclear receptor (GR)/PPAR-gamma co-activator-1 alpha (PGC-1α) pathway. This was evidenced by the decreased expression of GR, decreased methylation of GR and PGC1α, and decreased dimerization and interaction of GR with PGC1α. This led to altered synaptic activity evidenced by decreased interaction between the NMDA glutamatergic receptor and the PSD95 post-synaptic protein and a lower expression of Egr-1 and synapsin 1, in Cd320-/- mice compared to the wild type animals. Intraperitoneal injection of hydrocortisone rescued these molecular changes and normalized the learning memory tests. Our study suggests adaptive influences of moderate stress on loss of memory and cognition due to brain Cbl deficiency. The GR pathway could be a potential target for innovative therapy of cognitive manifestations in patients with poor response to conventional Cbl treatment.


Subject(s)
Brain/physiopathology , Hippocampus/physiopathology , Memory , Neuronal Plasticity/physiology , Receptors, Glucocorticoid/metabolism , Vitamin B 12 Deficiency/physiopathology , Animals , Behavior, Animal/drug effects , Cognition/drug effects , Disease Models, Animal , Glucocorticoids/pharmacology , Hippocampus/drug effects , Hydrocortisone/administration & dosage , Hydrocortisone/pharmacology , Male , Mice, Knockout , Neuronal Plasticity/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/metabolism , Signal Transduction/drug effects , Stress, Physiological/drug effects
3.
Int J Mol Sci ; 21(21)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126444

ABSTRACT

A deficiency in B-vitamins is known to lead to persistent developmental defects in various organs during early life. The nervous system is particularly affected with functional retardation in infants and young adults. In addition, even if in some cases no damage appears evident in the beginning of life, correlations have been shown between B-vitamin metabolism and neurodegenerative diseases. However, despite the usual treatment based on B-vitamin injections, the neurological outcomes remain poorly rescued in the majority of cases, compared with physiological functions. In this study, we explored whether a neonatal stimulation of neurogenesis could compensate atrophy of specific brain areas such as the hippocampus, in the case of B-vitamin deficiency. Using a physiological mild transient hypoxia within the first 24 h after birth, rat-pups, submitted or not to neonatal B-vitamin deficiency, were followed until 330-days-of-age for their cognitive capacities and their hippocampus status. Our results showed a gender effect since females were more affected than males by the deficiency, showing a persistent low body weight and poor cognitive performance to exit a maze. Nevertheless, the neonatal stimulation of neurogenesis with hypoxia rescued the maze performance during adulthood without modifying physiological markers, such as body weight and circulating homocysteine. Our findings were reinforced by an increase of several markers at 330-days-of-age in hypoxic animals, such as Ammon's Horn 1hippocampus (CA1) thickness and the expression of key actors of synaptic dynamic, such as the NMDA-receptor-1 (NMDAR1) and the post-synaptic-density-95 (PSD-95). We have not focused our conclusion on the neonatal hypoxia as a putative treatment, but we have discussed that, in the case of neurologic retardation associated with a reduced B-vitamin status, stimulation of the latent neurogenesis in infants could ameliorate their quality of life during their lifespan.


Subject(s)
Aging/pathology , Behavior, Animal , Cognitive Dysfunction/prevention & control , Folic Acid/metabolism , Neurogenesis , Vitamin B 12 Deficiency/complications , Animals , Animals, Newborn , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Female , Male , Maze Learning , Pregnancy , Rats , Rats, Wistar , Vitamin B 12/metabolism , Vitamins/metabolism
4.
Int J Mol Sci ; 21(19)2020 09 30.
Article in English | MEDLINE | ID: mdl-33008128

ABSTRACT

Among the numerous candidates for cell therapy of the central nervous system (CNS), olfactory progenitors (OPs) represent an interesting alternative because they are free of ethical concerns, are easy to collect, and allow autologous transplantation. In the present study, we focused on the optimization of neuron production and maturation. It is known that plated OPs respond to various trophic factors, and we also showed that the use of Nerve Growth Factor (NGF) allowed switching from a 60/40 neuron/glia ratio to an 80/20 one. Nevertheless, in order to focus on the integration of OPs in mature neural circuits, we cocultured OPs in primary cultures obtained from the cortex and hippocampus of newborn mice. When dissociated OPs were plated, they differentiated into both glial and neuronal phenotypes, but we obtained a 1.5-fold higher viability in cortex/OP cocultures than in hippocampus/OP ones. The fate of OPs in cocultures was characterized with different markers such as BrdU, Map-2, and Synapsin, indicating a healthy integration. These results suggest that the integration of transplanted OPs might by affected by trophic factors and the environmental conditions/cell phenotypes of the host tissue. Thus, a model of coculture could provide useful information on key cell events for the use of progenitors in cell therapy.


Subject(s)
Brain/metabolism , Neurons/metabolism , Olfactory Cortex/metabolism , Stem Cell Transplantation , Stem Cells/cytology , Animals , Brain/cytology , Brain/growth & development , Cell Differentiation/genetics , Cell Lineage/genetics , Central Nervous System/metabolism , Coculture Techniques , Humans , Mice , Nerve Growth Factor/genetics , Neuroglia/cytology , Neuroglia/metabolism , Neuroglia/transplantation , Neurons/transplantation , Olfactory Cortex/cytology , Olfactory Cortex/transplantation , Oligodendroglia/cytology , Oligodendroglia/metabolism , Oligodendroglia/transplantation , Stem Cells/metabolism
5.
Int J Mol Sci ; 20(22)2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31739389

ABSTRACT

Deficiencies in methyl donors, folate, and vitamin B12 are known to lead to brain function defects. Fetal development is the most studied but data are also available for such an impact in elderly rats. To compare the functional consequences of nutritional deficiency in young versus adult rats, we monitored behavioral outcomes of cerebellum and hippocampus circuits in the offspring of deficient mother rats and in adult rats fed a deficient diet from 2 to 8 months-of-age. We present data showing that the main deleterious consequences are found in young ages compared to adult ones, in terms of movement coordination and learning abilities. Moreover, we obtained sex and age differences in the deleterious effects on these functions and on neuronal layer integrity in growing young rats, while deficient adults presented only slight functional alterations without tissue damage. Actually, the cerebellum and the hippocampus develop and maturate according to different time lap windows and we demonstrate that a switch to a normal diet can only rescue circuits that present a long permissive window of time, such as the cerebellum, whereas the hippocampus does not. Thus, we argue, as others have, for supplements or fortifications given over a longer time than the developmental period.


Subject(s)
Brain/metabolism , Brain/physiopathology , Deficiency Diseases/complications , Deficiency Diseases/metabolism , Fetal Development , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/metabolism , Animals , Cognition , Deficiency Diseases/etiology , Diet , Disease Models, Animal , Female , Folic Acid Deficiency/complications , Folic Acid Deficiency/metabolism , Hippocampus/metabolism , Hippocampus/physiopathology , Male , Maze Learning , Rats
6.
Int J Mol Sci ; 20(20)2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615150

ABSTRACT

The micronutrients vitamins B9 and B12 act as methyl donors in the one-carbon metabolism involved in transmethylation reactions which critically influence epigenetic mechanisms and gene expression. Both vitamins are essential for proper development, and their deficiency during pregnancy has been associated with a wide range of disorders, including persisting growth retardation. Energy homeostasis and feeding are centrally regulated by the hypothalamus which integrates peripheral signals and acts through several orexigenic and anorexigenic mediators. We studied this regulating system in a rat model of methyl donor deficiency during gestation and lactation. At weaning, a predominance of the anorexigenic pathway was observed in deficient pups, with increased plasma peptide YY and increased hypothalamic pro-opiomelanocortin (POMC) mRNA, in line with abnormal leptin, ghrelin, and insulin secretion and/or signaling during critical periods of fetal and/or postnatal development of the hypothalamus. These results suggest that early methyl donor deficiency can affect the development and function of energy balance circuits, resulting in growth and weight deficits. Maternal administration of folic acid (3 mg/kg/day) during the perinatal period tended to rectify peripheral metabolic signaling and central neuropeptide and receptor expression, leading to reduced growth retardation.


Subject(s)
Energy Metabolism/genetics , Ghrelin/genetics , Peptide YY/genetics , Pro-Opiomelanocortin/genetics , Animals , Appetite Depressants/pharmacology , Energy Metabolism/drug effects , Feeding Behavior/drug effects , Female , Folic Acid/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Ghrelin/blood , Hypothalamus/metabolism , Insulin/blood , Insulin/genetics , Lactation , Leptin/blood , Leptin/genetics , Methylation/drug effects , Peptide YY/blood , Pregnancy , Pro-Opiomelanocortin/blood , RNA, Messenger/genetics , Rats , Vitamin B 12/genetics , Vitamin B 12/pharmacology
7.
Int J Mol Sci ; 20(4)2019 Feb 23.
Article in English | MEDLINE | ID: mdl-30813413

ABSTRACT

Vitamins B9 (folate) and B12 act as methyl donors in the one-carbon metabolism which influences epigenetic mechanisms. We previously showed that an embryofetal deficiency of vitamins B9 and B12 in the rat increased brain expression of let-7a and miR-34a microRNAs involved in the developmental control of gene expression. This was reversed by the maternal supply with folic acid (3 mg/kg/day) during the last third of gestation, resulting in a significant reduction of associated birth defects. Since the postnatal brain is subject to intensive developmental processes, we tested whether further folate supplementation during lactation could bring additional benefits. Vitamin deficiency resulted in weaned pups (21 days) in growth retardation, delayed ossification, brain atrophy and cognitive deficits, along with unchanged brain level of let-7a and decreased expression of miR-34a and miR-23a. Whereas maternal folic acid supplementation helped restore the levels of affected microRNAs, it led to a reduction of structural and functional defects taking place during the perinatal/postnatal periods, such as learning/memory capacities. Our data suggest that a gestational B-vitamin deficiency could affect the temporal control of the microRNA regulation required for normal development. Moreover, they also point out that the continuation of folate supplementation after birth may help to ameliorate neurological symptoms commonly associated with developmental deficiencies in folate and B12.


Subject(s)
Dietary Supplements , Folic Acid/pharmacology , Growth and Development/drug effects , Animals , Behavior, Animal , Disease Models, Animal , Female , Folic Acid/blood , Homocysteine/blood , Methylation , MicroRNAs/genetics , MicroRNAs/metabolism , Nervous System/growth & development , Pregnancy , Rats, Wistar , Vitamin B 12/blood
8.
J Pathol ; 248(3): 291-303, 2019 07.
Article in English | MEDLINE | ID: mdl-30734924

ABSTRACT

The pathomechanisms that associate a deficit in folate and/or vitamin B12 and the subsequent hyperhomocysteinemia with pathological brain ageing are unclear. We investigated the homocysteinylation of microtubule-associated proteins (MAPs) in brains of patients with Alzheimer's disease or vascular dementia, and in rats depleted in folate and vitamin B12, Cd320 KO mice with selective B12 brain deficiency and H19-7 neuroprogenitors lacking folate. Compared with controls, N-homocysteinylated tau and MAP1 were increased and accumulated in protein aggregates and tangles in the cortex, hippocampus and cerebellum of patients and animals. N-homocysteinylation dissociated tau and MAPs from ß-tubulin, and MS analysis showed that it targets lysine residues critical for their binding to ß-tubulin. N-homocysteinylation increased in rats exposed to vitamin B12 and folate deficit during gestation and lactation and remained significantly higher when they became 450 days-old, despite returning to normal diet at weaning, compared with controls. It was correlated with plasma homocysteine (Hcy) and brain expression of methionine tRNAsynthetase (MARS), the enzyme required for the synthesis of Hcy-thiolactone, the substrate of N-homocysteinylation. Experimental inactivation of MARS prevented the N-homocysteinylation of tau and MAP1, and the dissociation of tau and MAP1 from ß-tubulin and PSD95 in cultured neuroprogenitors. In conclusion, increased N-homocysteinylation of tau and MAP1 is a mechanism of brain ageing that depends on Hcy concentration and expression of MARS enzyme. Its irreversibility and cumulative occurrence throughout life may explain why B12 and folate supplementation of the elderly has limited effects, if any, to prevent pathological brain ageing and cognitive decline. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Alzheimer Disease/pathology , Dementia, Vascular/pathology , Hyperhomocysteinemia/pathology , tau Proteins/metabolism , Aging/physiology , Alzheimer Disease/metabolism , Animals , Autopsy/methods , Brain/metabolism , Brain/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Dementia, Vascular/metabolism , Female , Humans , Mice, Knockout , Rats
9.
Mol Neurobiol ; 56(2): 892-906, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29804229

ABSTRACT

Gestational methyl donor (especially B9 and B12 vitamins) deficiency is involved in birth defects and brain development retardation. The underlying molecular mechanisms that are dysregulated still remain poorly understood, in particular in the cerebellum. As evidenced from previous data, females are more affected than males. In this study, we therefore took advantage of a validated rat nutritional model and performed a microarray analysis on female progeny cerebellum, in order to identify which genes and molecular pathways were disrupted in response to methyl donor deficiency. We found that cerebellum development is altered in female pups, with a decrease of the granular cell layer thickness at postnatal day 21. Furthermore, we investigated the involvement of the Wnt signaling pathway, a major molecular pathway involved in neuronal development and later on in synaptic assembly and neurotransmission processes. We found that Wnt canonical pathway was disrupted following early methyl donor deficiency and that neuronal targets were selectively enriched in the downregulated genes. These results could explain the structural brain defects previously observed and highlighted new genes and a new molecular pathway affected by nutritional methyl donor deprivation.


Subject(s)
Brain/metabolism , Neurogenesis/physiology , Neurons/cytology , Wnt Signaling Pathway/physiology , Animals , Cells, Cultured , Female , Rats, Wistar , Sex Factors
10.
Mol Neurobiol ; 54(7): 5017-5033, 2017 09.
Article in English | MEDLINE | ID: mdl-27534418

ABSTRACT

The micronutrients folate and vitamin B12 are essential for the proper development of the central nervous system, and their deficiency during pregnancy has been associated with a wide range of disorders. They act as methyl donors in the one-carbon metabolism which critically influences epigenetic mechanisms. In order to depict further underlying mechanisms, we investigated the role of let-7 and miR-34, two microRNAs regulated by methylation, on a rat model of maternal deficiency. In several countries, public health policies recommend periconceptional supplementation with folic acid. However, the question about the duration and periodicity of supplementation remains. We therefore tested maternal supply (3 mg/kg/day) during the last third of gestation from embryonic days (E) 13 to 20. Methyl donor deficiency-related developmental disorders at E20, including cerebellar and interhemispheric suture defects and atrophy of selective cerebral layers, were associated with increased brain expression (by 2.5-fold) of let-7a and miR-34a, with subsequent downregulation of their regulatory targets such as Trim71 and Notch signaling partners, respectively. These processes could be reversed by siRNA strategy in differentiating neuroprogenitors lacking folate, with improvement of their morphological characteristics. While folic acid supplementation helped restoring the levels of let-7a and miR-34a and their downstream targets, it led to a reduction of structural and functional defects taking place during the perinatal period. Our data outline the potential role of let-7 and miR-34 and their related signaling pathways in the developmental defects following gestational methyl donor deficiency and support the likely usefulness of late folate supplementation in at risk women.


Subject(s)
Brain Diseases/drug therapy , Brain/metabolism , Dietary Supplements , Folic Acid/pharmacology , MicroRNAs/metabolism , Animals , Brain Diseases/embryology , Brain Diseases/genetics , Female , MicroRNAs/drug effects , MicroRNAs/genetics , Pregnancy , Rats, Wistar
11.
FASEB J ; 29(9): 3713-25, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26018677

ABSTRACT

Deficiency in the methyl donors vitamin B12 and folate during pregnancy and postnatal life impairs proper brain development. We studied the consequences of this combined deficiency on cerebellum plasticity in offspring from rat mothers subjected to deficient diet during gestation and lactation and in rat neuroprogenitor cells expressing cerebellum markers. The major proteomic change in cerebellum of 21-d-old deprived females was a 2.2-fold lower expression of synapsins, which was confirmed in neuroprogenitors cultivated in the deficient condition. A pathway analysis suggested that these proteomic changes were related to estrogen receptor α (ER-α)/Src tyrosine kinase. The influence of impaired ER-α pathway was confirmed by abnormal negative geotaxis test at d 19-20 and decreased phsophorylation of synapsins in deprived females treated by ER-α antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP). This effect was consistent with 2-fold decreased expression and methylation of ER-α and subsequent decreased ER-α/PPAR-γ coactivator 1 α (PGC-1α) interaction in deficiency condition. The impaired ER-α pathway led to decreased expression of synapsins through 2-fold decreased EGR-1/Zif-268 transcription factor and to 1.7-fold reduced Src-dependent phosphorylation of synapsins. The treatment of neuroprogenitors with either MPP or PP1 (4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline, 6,7-dimethoxy-N-(4-phenoxyphenyl)-4-quinazolinamine, SKI-1, Src-l1) Src inhibitor produced similar effects. In conclusion, the deficiency during pregnancy and lactation impairs the expression of synapsins through a deregulation of ER-α pathway.


Subject(s)
Brain/metabolism , Estrogen Receptor alpha/metabolism , Folic Acid Deficiency , Gene Expression Regulation, Developmental , Lactation , Synapsins/biosynthesis , Vitamin B 12 Deficiency , Animals , Brain/embryology , Brain/pathology , Early Growth Response Protein 1/metabolism , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/antagonists & inhibitors , Female , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , PPAR gamma/metabolism , Pregnancy , Rats
12.
Am J Physiol Endocrinol Metab ; 307(11): E1009-19, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25294213

ABSTRACT

Early deficiency of the methyl donors folate and vitamin B12 produces hyperhomocysteinemia and cognitive and motor disorders in 21-day-old rat pups from dams fed a diet deficient in methyl donors during gestation and lactation. These disorders are associated with impaired neurogenesis and altered synaptic plasticity in cerebellum. We aimed to investigate whether these disorders could be related to impaired expression of neurosteroidogenesis-associated proteins, key regulator receptors, and some steroid content in the cerebellum. The methyl donor deficiency produced a decreased concentration of folate and vitamin B12, along with accumulation of homocysteine in Purkinje cells in both sexes, whereas the S-adenosylmethionine/S-adenosylhomocysteine ratio was reduced only in females. The transcription level and protein expression of StAR, aromatase, ERα, ERß, and LH receptors were decreased only in females, with a marked effect in Purkinje cells, as shown by immunohistochemistry. Consistently, reduced levels of estradiol and pregnenolone were measured in cerebellar extracts of females only. The decreased expression levels of the transcriptional factors CREB, phospho-CREB, and SF-1, the lesser increase of cAMP concentration, and the lower level of phospho-PKC in the cerebellum of deficient females suggest that the activation of neurosteroidogenesis via cAMP-mediated signaling pathways associated with LHR activation would be altered. In conclusion, a gestational methyl donor deficiency impairs neurosteroidogenesis in cerebellum in a sex-dependent manner.


Subject(s)
Cerebellum/metabolism , Cyclic AMP/physiology , Folic Acid Deficiency/metabolism , Neurotransmitter Agents/biosynthesis , Signal Transduction/physiology , Vitamin B 12 Deficiency/metabolism , Animals , Estradiol/metabolism , Female , Microsomes/metabolism , Mitochondria/metabolism , Phosphoproteins/biosynthesis , Phosphoproteins/genetics , Pregnenolone/metabolism , Rats , Rats, Wistar , Transcription, Genetic/genetics , Transcription, Genetic/physiology
13.
Br J Nutr ; 111(6): 1021-31, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24229781

ABSTRACT

Gestational methyl donor deficiency (MDD) leads to growth retardation as well as to cognitive and motor disorders in 21-d-old rat pups. These disorders are related to impaired neurogenesis in the cerebral neurogenic areas. Olfactory bulbs (OB), the main target of neuronal progenitors originating from the subventricular zone, play a critical role during the postnatal period by allowing the pups to identify maternal odour. We hypothesised that growth retardation could result from impaired suckling due to impaired olfactory discrimination through imbalanced apoptosis/neurogenesis in the OB. Since neurosteroidogenesis modulates neurogenesis in OB, in the present study, we investigated whether altered neurosteroidogenesis could explain some these effects. Pups born to dams fed a normal diet (n 24) and a MDD diet (n 27) were subjected to olfactory tests during the lactation and weaning periods (n 24 and 20, respectively). We studied the markers of apoptosis/neurogenesis and the expression levels of the key neurosteroidogenic enzyme aromatase, the cholesterol-transfer protein StAR (steroidogenic acute regulatory protein) and the ERα oestrogen receptor and the content of oestradiol in OB. The 21-d-old MDD female pups displayed lower body weight and impaired olfactory discrimination when compared with the control pups. MDD led to greater homocysteine accumulation and more pronounced apoptosis, along with impaired cell proliferation in the OB of female pups. The expression levels of aromatase, StAR and ERα as well as the content of oestradiol were lower in the OB of the MDD female pups than in those of the control female pups. In conclusion, gestational MDD may alter olfactory discrimination performances by affecting neurogenesis, apoptosis and neurosteroidogenesis in OB in a sex-dependent manner. It may be involved in growth retardation through impaired suckling.


Subject(s)
Animals, Newborn/metabolism , DNA Methylation/physiology , Neurotransmitter Agents/biosynthesis , Olfaction Disorders/etiology , Olfactory Bulb/metabolism , Prenatal Exposure Delayed Effects , Animals , Apoptosis , Aromatase/analysis , Aromatase/genetics , Diet , Estrogen Receptor alpha/analysis , Estrogen Receptor alpha/genetics , Female , Gene Expression , Homocysteine/metabolism , Lactation , Male , Methylation , Neurogenesis , Phosphoproteins/analysis , Phosphoproteins/genetics , Pregnancy , Rats , Rats, Wistar , Weaning
14.
Pflugers Arch ; 466(5): 833-50, 2014 May.
Article in English | MEDLINE | ID: mdl-23999818

ABSTRACT

Barker's concept of 'foetal programming' proposes that intrauterine growth restriction (IUGR) predicts complex metabolic diseases through relationships that may be further modified by the postnatal environment. Dietary restriction and deficit in methyl donors, folate, vitamin B12, and choline are used as experimental conditions of foetal programming as they lead to IUGR and decreased birth weight. Overfeeding and deficit in methyl donors increase central fat mass and lead to a dramatic increase of plasma free fatty acids (FFA) in offspring. Conversely, supplementing the mothers under protein restriction with folic acid reverses metabolic and epigenomic phenotypes of offspring. High-fat diet or methyl donor deficiency (MDD) during pregnancy and lactation produce liver steatosis and myocardium hypertrophy that result from increased import of FFA and impaired fatty acid ß-oxidation, respectively. The underlying molecular mechanisms show dysregulations related with similar decreased expression and activity of sirtuin 1 (SIRT1) and hyperacetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α). High-fat diet and overfeeding impair AMPK-dependent phosphorylation of PGC-1α, while MDD decreases PGC-1α methylation through decreased expression of PRMT1 and cellular level of S-adenosyl methionine. The visceral manifestations of metabolic syndrome are under the influence of endoplasmic reticulum (ER) stress in overnourished animal models. These mechanisms should also deserve attention in the foetal programming effects of MDD since vitamin B12 influences ER stress through impaired SIRT1 deacetylation of HSF1. Taken together, similarities and synergies of high-fat diet and MDD suggest, therefore, considering their consecutive or contemporary influence in the mechanisms of complex metabolic diseases.


Subject(s)
Epigenesis, Genetic , Fatty Acids/metabolism , Fetal Development , Fetal Heart/metabolism , Fetal Nutrition Disorders/metabolism , Liver/metabolism , Animals , Female , Fetal Heart/embryology , Fetal Heart/physiology , Genome, Human , Humans , Liver/embryology , Liver/physiology , Nutrigenomics
15.
Trends Endocrinol Metab ; 24(6): 279-89, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23474063

ABSTRACT

Folate plays a key role in the interactions between nutrition, fetal programming, and epigenomics. Maternal folate status influences DNA methylation, inheritance of the agouti phenotype, expression of imprinting genes, and the effects of mycotoxin FB1 on heterochromatin assembly in rodent offspring. Deficiency in folate and other methyl donors increases birth defects and produces visceral manifestations of fetal programming, including liver and heart steatosis, through imbalanced methylation and acetylation of PGC1-α and decreased SIRT1 expression, and produces persistent cognitive and learning disabilities through impaired plasticity and hippocampal atrophy. Maternal folate supplementation also produces long-term epigenomic effects in offspring, some beneficial and others negative. Deciphering these mechanisms will help understanding the discordances between experimental models and population studies of folate deficiency and supplementation.


Subject(s)
Fetal Development/physiology , Folic Acid/metabolism , Epigenesis, Genetic/genetics , Female , Fetal Development/genetics , Humans , Models, Biological , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Sirtuin 1/genetics , Sirtuin 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
16.
Biochimie ; 95(5): 1033-40, 2013 May.
Article in English | MEDLINE | ID: mdl-23415654

ABSTRACT

Vitamin B12 (cobalamin, cbl) is a cofactor of methionine synthase (MTR) in the synthesis of methionine, the precursor of the universal methyl donor S-Adenosylmethionine (SAM), which is involved in epigenomic regulatory mechanisms. We have established a neuronal cell model with stable expression of a transcobalamin-oleosin chimer and subsequent decreased cellular availability of vitamin B12, which produces reduced proliferation, increased apoptosis and accelerated differentiation through PP2A, NGF and TACE pathways. Anti-transcobalamin antibody or impaired transcobalamin receptor expression produce also impaired proliferation in other cells. Consistently, the transcription, protein expression and activity of MTR are increased in proliferating cells of skin and intestinal epitheliums, in rat intestine crypts and in proliferating CaCo2 cells, while MTR activity correlates with DNA methylation in rat intestine villi. Exposure to nitrous oxide in animal models identified impairment of MTR reaction as the most important metabolic cause of neurological manifestations of B12 deficiency. Early vitamin B12 and folate deprivation during gestation and lactation of a 'dam-progeny' rat model developed in our laboratory is associated with long-lasting disabilities of behavior and memory capacities, with persisting hallmarks related to increased apoptosis, impaired neurogenesis and altered plasticity. We found also an epigenomic deregulation of energy metabolism and fatty acids beta-oxidation in myocardium and liver, through imbalanced methylation/acetylation of PGC-1alpha and decreased expression of SIRT1. These nutrigenomic effects display similarities with the molecular mechanisms of fetal programming. Beside deficiency, B12 loading increases the expression of MTR through internal ribosome entry sites (IRES) and down-regulates MDR-1 gene expression. In conclusion, vitamin B12 influences cell proliferation, differentiation and apoptosis in brain. Vitamin B12 and folate combined deficiency impairs fatty acid oxidation and energy metabolism in liver and heart through epigenomic mechanisms related to imbalanced acetylation/methylation. Some but not all of these effects reflect the upstream role of vitamin B12 in SAM synthesis.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Brain/metabolism , Liver/metabolism , Myocardium/metabolism , Vitamin B 12/metabolism , Animals , Humans
17.
PLoS One ; 7(11): e48828, 2012.
Article in English | MEDLINE | ID: mdl-23173039

ABSTRACT

Whereas brief acute or intermittent episodes of hypoxia have been shown to exert a protective role in the central nervous system and to stimulate neurogenesis, other studies suggest that early hypoxia may constitute a risk factor that influences the future development of mental disorders. We therefore investigated the effects of a neonatal "conditioning-like" hypoxia (100% N2, 5 min) on the brain and the cognitive outcomes of rats until 720 days of age (physiologic senescence). We confirmed that such a short hypoxia led to brain neurogenesis within the ensuing weeks, along with reduced apoptosis in the hippocampus involving activation of Erk1/2 and repression of p38 and death-associated protein (DAP) kinase. At 21 days of age, increased thicknesses and cell densities were recorded in various subregions, with strong synapsin activation. During aging, previous exposure to neonatal hypoxia was associated with enhanced memory retrieval scores specifically in males, better preservation of their brain integrity than controls, reduced age-related apoptosis, larger hippocampal cell layers, and higher expression of glutamatergic and GABAergic markers. These changes were accompanied with a marked expression of synapsin proteins, mainly of their phosphorylated active forms which constitute major players of synapse function and plasticity, and with increases of their key regulators, i.e. Erk1/2, the transcription factor EGR-1/Zif-268 and Src kinase. Moreover, the significantly higher interactions between PSD-95 scaffolding protein and NMDA receptors measured in the hippocampus of 720-day-old male animals strengthen the conclusion of increased synaptic functional activity and plasticity associated with neonatal hypoxia. Thus, early non-injurious hypoxia may trigger beneficial long term effects conferring higher resistance to senescence in aged male rats, with a better preservation of cognitive functions.


Subject(s)
Aging/physiology , Brain/physiopathology , Hypoxia/physiopathology , Aging/metabolism , Animals , Animals, Newborn , Blood Gas Analysis , Brain/metabolism , Brain/pathology , Cell Death , Cell Proliferation , Cell Survival , Female , Hypoxia/blood , Hypoxia/metabolism , Hypoxia/pathology , Locomotion/physiology , Male , Memory/physiology , Neurogenesis , Neuronal Plasticity/physiology , Rats , Rats, Wistar , Synapses/metabolism
18.
FASEB J ; 26(10): 3980-92, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22713523

ABSTRACT

Despite the key role in neuronal development of a deficit in the methyl donor folate, little is known on the underlying mechanisms. We therefore studied the consequences of folate deficiency on proliferation, differentiation, and plasticity of the rat H19-7 hippocampal cell line. Folate deficit reduced proliferation (17%) and sensitized cells to differentiation-associated apoptosis (+16%). Decreased production (-58%) of S-adenosylmethionine (the universal substrate for transmethylation reactions) and increased expression of histone deacetylases (HDAC4,6,7) would lead to epigenomic changes that may impair the differentiation process. Cell polarity, vesicular transport, and synaptic plasticity were dramatically affected, with poor neurite outgrowth (-57%). Cell treatment by an HDAC inhibitor (SAHA) led to a noticeable improvement of cell polarity and morphology, with longer processes. Increased homocysteine levels (+55%) consecutive to folate shortage produced homocysteinylation, evidenced by coimmunoprecipitations and mass spectrometry, and aggregation of motor proteins dynein and kinesin, along with functional alterations, as reflected by reduced interactions with partner proteins. Prominent homocysteinylation of key neuronal proteins and subsequent aggregation certainly constitute major adverse effects of folate deficiency, affecting normal development with possible long-lasting consequences.


Subject(s)
Folic Acid Deficiency/metabolism , Folic Acid/pharmacology , Hippocampus/cytology , Homocysteine/pharmacology , Neurons/cytology , Neurons/drug effects , Animals , Blotting, Western , Cell Differentiation/drug effects , Cell Line , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Hep G2 Cells , Humans , Immunohistochemistry , Neurons/metabolism , Protein Binding , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Vitamin B 12/pharmacology
19.
J Hepatol ; 57(2): 344-51, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22521344

ABSTRACT

BACKGROUND & AIMS: Folate and cobalamin are methyl donors needed for the synthesis of methionine, which is the precursor of S-adenosylmethionine, the substrate of methylation in epigenetic, and epigenomic pathways. Methyl donor deficiency produces liver steatosis and predisposes to metabolic syndrome. Whether impaired fatty acid oxidation contributes to this steatosis remains unknown. METHODS: We evaluated the consequences of methyl donor deficient diet in liver of pups from dams subjected to deficiency during gestation and lactation. RESULTS: The deprived rats had microvesicular steatosis, with increased triglycerides, decreased methionine synthase activity, S-adenosylmethionine, and S-adenosylmethionine/S-adenosylhomocysteine ratio. We observed no change in apoptosis markers, oxidant and reticulum stresses, and carnityl-palmitoyl transferase 1 activity, and a decreased expression of SREBP-1c. Impaired beta-oxidation of fatty acids and carnitine deficit were the predominant changes, with decreased free and total carnitines, increased C14:1/C16 acylcarnitine ratio, decrease of oxidation rate of palmitoyl-CoA and palmitoyl-L-carnitine and decrease of expression of novel organic cation transporter 1, acylCoA-dehydrogenase and trifunctional enzyme subunit alpha and decreased activity of complexes I and II. These changes were related to lower protein expression of ER-α, ERR-α and HNF-4α, and hypomethylation of PGC-1α co-activator that reduced its binding with PPAR-α, ERR-α, and HNF-4α. CONCLUSIONS: The liver steatosis resulted predominantly from hypomethylation of PGC1-α, decreased binding with its partners and subsequent impaired mitochondrial fatty acid oxidation. This link between methyl donor deficiency and epigenomic deregulations of energy metabolism opens new insights into the pathogenesis of fatty liver disease, in particular, in relation to the fetal programming hypothesis.


Subject(s)
Estrogen Receptor alpha/physiology , Fatty Acids/metabolism , Hepatocyte Nuclear Factor 4/physiology , Liver/metabolism , RNA-Binding Proteins/metabolism , Receptors, Estrogen/physiology , Transcription Factors/metabolism , Animals , Electron Transport , Endoplasmic Reticulum Stress , Energy Metabolism , Estrogen Receptor alpha/analysis , Fatty Liver/etiology , Folic Acid/blood , Hepatocyte Nuclear Factor 4/analysis , Methylation , Oxidation-Reduction , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Rats , Rats, Wistar , Receptors, Estrogen/analysis , Vitamin B 12/blood , ERRalpha Estrogen-Related Receptor
20.
Bull Acad Natl Med ; 196(9): 1829-42, 2012 Dec.
Article in French | MEDLINE | ID: mdl-24552105

ABSTRACT

Folates are needed for synthesis of methionine, the precursor of S-adenosyl methionine (SAM). They play therefore a key role in nutrition and epigenomics by fluxing monocarbons towards synthesis or methylation of DNA and RNA, and methylation of gene transregulators, respectively. The deficiency produces intrauterine growth retardation and birth dejects. Folate deficiency deregulates epigenomic mechanisms related to fetal programming through decreased cellular availability of SAM. Epigenetic mechanisms of folate deficiency are illustrated by inheritance of coat colour of agouti mice model and altered expression of Igf2/H19 imprinting genes. Dietary exposure to fumonisin FB1 acts synergistically with folate deficiency on alterations of heterochromatin assembly. Deficiency in folate and vitamin B12 produces impaired fatty acid oxidation in liver and heart through imbalanced methylation and acetylation of PGC1-alpha and decreased expression of SIRT1, and long-lasting cognitive disabilities through impaired hippocampal cell proliferation, differentiation and plasticity and atrophy of hippocampal CA1. Deciphering these mechanisms will help understand the discordances between experimental models and population studies on folate supplementation.


Subject(s)
Epigenesis, Genetic/physiology , Fetal Development/genetics , Folic Acid Deficiency/genetics , Animals , Epigenomics , Female , Folic Acid Deficiency/complications , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Mice , Nutritional Status/genetics , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...