Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 231: 113545, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741147

ABSTRACT

Human noroviruses (HuNoVs) are the predominant etiological agent of viral gastroenteritis in all age groups worldwide. Mutations over the years have affected noroviruses' responses to environmental conditions due to the arrangement of amino acid residues exposed on the VP1 capsid surface of each strain. The GII.4 HuNoV genotype has been the predominant variant for decades, while the GII.17 genotype has often been detected in East Asia since 2014. Here, GII.17 and GII.4 baculovirus-expressed VLPs (virus-like particles) were used to study the biological (binding to HuNoV ligand, namely the ABO and Lewis antigens) and physicochemical properties (size, morphology, and charge) of the HuNoV capsid under different conditions (temperature, pH, and ionic strength). GII.17 showed stability at low and high ionic strength, while GII.4 aggregated at an ionic strength of 10 mM. The nature of the buffers influences the morphology and stability of the VLPs. Here, both VLPs were highly stable from pH 7-8.5 at 25 °C. VLPs retained HBGA binding capability for the pH, ionic strength and temperature encountered in the stomach (fed state) and the small intestine. Increasing the temperature to above 65 °C altered the morphology of VLPs, causing aggregation, and decreased their affinity to HBGAs. Comparing both isolates, GII.17 showed a better stability profile and higher affinity to HBGAs than GII.4, making them interesting candidate particles for a future norovirus vaccine. Biological and physicochemical studies of VLPs are as pertinent as ever in view of the future arrival of VLP-based HuNoV vaccines.


Subject(s)
Norovirus , Humans , Norovirus/genetics , Capsid Proteins/genetics , Capsid Proteins/chemistry , Temperature
2.
J Virol ; 96(19): e0086522, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36121297

ABSTRACT

Human norovirus (HuNoV) infection is associated with an active FUT2 gene, which characterizes the secretor phenotype. However, nonsecretor individuals are also affected by HuNoV infection although in a lesser proportion. Here, we studied GII.3, GII.4, and GII.17 HuNoV interactions in nonsecretor individuals using virus-like particles (VLPs). Only GII.4 HuNoV specifically interacted with nonsecretor saliva. Competition experiments using histo-blood group antigen (HBGA)-specific monoclonal antibodies (MAbs) demonstrate that GII.4 VLPs recognized the Lewis a (Lea) antigen. We also analyzed HuNoV VLP interactions on duodenum tissue blocks from healthy nonsecretor individuals. VLP binding was observed for the three HuNoV genotypes in 10 of the 13 individuals, and competition experiments demonstrated that VLP recognition was driven by an interaction with the Lea antigen. In 3 individuals, binding was restricted to either GII.4 alone or GII.3 and GII.17. Finally, we performed a VLP binding assay on proximal and distal colon tissue blocks from a nonsecretor patient with Crohn's disease. VLP binding to inflammatory tissues was genotype specific since GII.4 and GII.17 VLPs were able to interact with regenerative mucosa, whereas GII.3 VLP was not. The binding of GII.4 and GII.17 HuNoV VLPs was linked to Lea in regenerative mucosae from the proximal and distal colon. Overall, our data clearly showed that Lea has a pivotal role in the recognition of HuNoV in nonsecretors. We also showed that Lea is expressed in inflammatory/regenerative tissues and interacts with HuNoV in a nonsecretor individual. The physiological and immunological consequences of such interactions in nonsecretors have yet to be elucidated. IMPORTANCE Human norovirus (HuNoV) is the main etiological agent of viral gastroenteritis in all age classes. HuNoV infection affects mainly secretor individuals where ABO(H) and Lewis histo-blood group antigens (HBGAs) are present in the small intestine. Nonsecretor individuals, who only express Lewis (Le) antigens, are less susceptible to HuNoV infection. Here, we studied the interaction of common HuNoV genotypes (GII.3, GII.4, and GII.17) in nonsecretor individuals using synthetic viral particles. Saliva binding assays showed that only GII.4 interacted with nonsecretor saliva via the Lewis a (Lea) antigen Surprisingly, the three genotypes interacted with nonsecretor enterocytes via the Lea antigen on duodenal tissue blocks, which were more relevant for HuNoV/HBGA studies. The Lea antigen also played a pivotal role in the recognition of GII.4 and GII.17 particles by inflammatory colon tissue from a nonsecretor Crohn's disease patient. The implications of HuNoV binding in nonsecretors remain to be elucidated in physiological and pathological conditions encountered in other intestinal diseases.


Subject(s)
Blood Group Antigens , Caliciviridae Infections , Norovirus , Antibodies, Monoclonal/metabolism , Blood Group Antigens/metabolism , Caliciviridae Infections/virology , Crohn Disease , Genotype , Humans , Lewis Blood Group Antigens/metabolism , Norovirus/physiology
3.
Front Microbiol ; 13: 858245, 2022.
Article in English | MEDLINE | ID: mdl-35572680

ABSTRACT

For the last 30 years, molecular surveys have shown that human norovirus (HuNoV), predominantly the GII.4 genotype, is one of the main causative agents of gastroenteritis. However, epidemiological surveys have revealed the worldwide emergence of GII.17 HuNoVs. Genetic analysis confirmed that GII.17 strains are distributed into three variants (i.e., Kawasaki 308, Kawasaki 323, and CS-E1). Here, virus-like particles (VLPs) were baculovirus-expressed from these variants to study putative interactions with HBGA. Qualitative analysis of the HBGA binding profile of each variant showed that the most recent and predominant GII.17 variant, Kawasaki 308, possesses a larger binding spectrum. The retrospective study of GII.17 strains documented before the emergence of the dominant Kawasaki 308 variant showed that the emergence of a new GII.17 variant could be related to an increased binding capacity toward HBGA. The use of duodenal histological sections confirmed that recognition of enterocytes involved HBGA for the three GII.17 variants. Finally, we observed that the relative affinity of recent GII.17 VLPs for HBGA remains lower than that of the GII.4-2012 variant. These observations suggest a model whereby a combination of virological factors, such as polymerase fidelity and increased affinity for HBGA, and immunological factors was responsible for the incomplete and non-persistent replacement of GII.4 by new GII.17 variants.

4.
Food Environ Virol ; 14(2): 217-221, 2022 06.
Article in English | MEDLINE | ID: mdl-35306645

ABSTRACT

Disinfection of hospital facilities and ambulances is an important issue for breaking the chain of transmission of viral pathogens. Hydrogen peroxide has provided promising results in laboratory assays. Here, we evaluate the efficacy of a hydrogen peroxide nebulizer for the inactivation of surrogate MS2 bacteriophage and murine norovirus (MNV) in a patient waiting room and the fully equipped cabin of a medical ambulance. We observed an average 3 log10 titer reduction in both settings, which represents the destruction of over 106 and 109 infectious particles of MNV and MS2 per cm2, respectively. The potential for viral exposure is high for health workers when disinfecting confined and cluttered spaces, so the use of a hydrogen peroxide mist might offer an affordable and efficient solution to minimize the risk of viral contaminations.


Subject(s)
Disinfection , Norovirus , Ambulances , Animals , Disinfection/methods , Hospitals , Humans , Hydrogen Peroxide/pharmacology , Mice , Nebulizers and Vaporizers , Norovirus/physiology , Waiting Rooms
SELECTION OF CITATIONS
SEARCH DETAIL
...