Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36428699

ABSTRACT

The purpose of the present pilot study was to estimate T1 and T2 metric values derived simultaneously from a new, rapid Magnetic Resonance Fingerprinting (MRF) technique, as well as to assess their ability to characterize-brain metastases (BM) and normal-appearing brain tissues. Fourteen patients with BM underwent MRI, including prototype MRF, on a 3T scanner. In total, 108 measurements were analyzed: 42 from solid parts of BM's (21 each on T1 and T2 maps) and 66 from normal-appearing brain tissue (11 ROIs each on T1 and T2 maps for gray matter [GM], white matter [WM], and cerebrospinal fluid [CSF]). The BM's mean T1 and T2 values differed significantly from normal-appearing WM (p < 0.05). The mean T1 values from normal-appearing GM, WM, and CSF regions were 1205 ms, 840 ms, and 4233 ms, respectively. The mean T2 values were 108 ms, 78 ms, and 442 ms, respectively. The mean T1 and T2 values for untreated BM (n = 4) were 2035 ms and 168 ms, respectively. For treated BM (n = 17) the T1 and T2 values were 2163 ms and 141 ms, respectively. MRF technique appears to be a promising and rapid quantitative method for the characterization of free water content and tumor morphology in BMs.

2.
Cancers (Basel) ; 14(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35892883

ABSTRACT

The present exploratory study investigates the performance of a new, rapid, synthetic MRI method for diagnostic image quality assessment and measurement of relaxometry metric values in head and neck (HN) tumors and normal-appearing masseter muscle. The multi-dynamic multi-echo (MDME) sequence was used for data acquisition, followed by synthetic image reconstruction on a 3T MRI scanner for 14 patients (3 untreated and 11 treated). The MDME enables absolute quantification of physical tissue properties, including T1 and T2, with a shorter scan time than the current state-of-the-art methods used for relaxation measurements. The vendor termed the combined package MAGnetic resonance imaging Compilation (MAGiC). In total, 48 regions of interest (ROIs) were analyzed, drawn on normal-appearing masseter muscle and tumors in the HN region. Mean T1 and T2 values obtained from normal-appearing muscle were 880 ± 52 ms and 46 ± 3 ms, respectively. Mean T1 and T2 values obtained from tumors were 1930 ± 422 ms and 77 ± 13 ms, respectively, for the untreated group, 1745 ± 410 ms and 107 ± 61 ms, for the treated group. A total of 1552 images from both synthetic MRI and conventional clinical imaging were assessed by the radiologists to provide the rating for T1w and T2w image contrasts. The synthetically generated qualitative T2w images were acceptable and comparable to conventional diagnostic images (93% acceptability rating for both). The acceptability ratings for MAGiC-generated T1w, and conventional images were 64% and 100%, respectively. The benefit of MAGiC in HN imaging is twofold, providing relaxometry maps in a clinically feasible time and the ability to generate a different combination of contrast images in a single acquisition.

3.
Cancers (Basel) ; 14(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35681631

ABSTRACT

The present preliminary study aims to characterize brain metastases (BM) using T1 and T2 maps generated from newer, rapid, synthetic MRI (MAGnetic resonance image Compilation; MAGiC) in a clinical setting. We acquired synthetic MRI data from 11 BM patients on a 3T scanner. A multiple-dynamic multiple-echo (MDME) sequence was used for data acquisition and synthetic image reconstruction, including post-processing. MDME is a multi-contrast sequence that enables absolute quantification of physical tissue properties, including T1 and T2, independent of the scanner settings. In total, 82 regions of interest (ROIs) were analyzed, which were obtained from both normal-appearing brain tissue and BM lesions. The mean values obtained from the 48 normal-appearing brain tissue regions and 34 ROIs of BM lesions (T1 and T2) were analyzed using standard statistical methods. The mean T1 and T2 values were 1143 ms and 78 ms, respectively, for normal-appearing gray matter, 701 ms and 64 ms for white matter, and 4206 ms and 390 ms for cerebrospinal fluid. For untreated BMs, the mean T1 and T2 values were 1868 ms and 100 ms, respectively, and 2211 ms and 114 ms for the treated group. The quantitative T1 and T2 values generated from synthetic MRI can characterize BM and normal-appearing brain tissues.

4.
Cancers (Basel) ; 13(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34503129

ABSTRACT

The present study aims to monitor longitudinal changes in simulated tumor interstitial fluid pressure (IFP) and velocity (IFV) values using dynamic contrast-enhanced (DCE)-MRI-based computational fluid modeling (CFM) in pancreatic ductal adenocarcinoma (PDAC) patients. Nine PDAC patients underwent MRI, including DCE-MRI, on a 3-Tesla MRI scanner at pre-treatment (TX (0)), after the first fraction of stereotactic body radiotherapy (SBRT, (D1-TX)), and six weeks post-TX (D2-TX). The partial differential equation of IFP formulated from the continuity equation, incorporating the Starling Principle of fluid exchange, Darcy velocity, and volume transfer constant (Ktrans), was solved in COMSOL Multiphysics software to generate IFP and IFV maps. Tumor volume (Vt), Ktrans, IFP, and IFV values were compared (Wilcoxon and Spearman) between the time- points. D2-TX Ktrans values were significantly different from pre-TX and D1-TX (p < 0.05). The D1-TX and pre-TX mean IFV values exhibited a borderline significant difference (p = 0.08). The IFP values varying <3.0% between the three time-points were not significantly different (p > 0.05). Vt and IFP values were strongly positively correlated at pre-TX (ρ = 0.90, p = 0.005), while IFV exhibited a strong negative correlation at D1-TX (ρ = -0.74, p = 0.045). Vt, Ktrans, IFP, and IFV hold promise as imaging biomarkers of early response to therapy in PDAC.

5.
World J Radiol ; 9(1): 17-26, 2017 Jan 28.
Article in English | MEDLINE | ID: mdl-28144403

ABSTRACT

AIM: To noninvasively investigate tumor cellularity measured using diffusion-weighted magnetic resonance imaging (DW-MRI) and glucose metabolism measured by 18F-labeled fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) during radiation therapy (RT) for human papillomavirus negative (HPV-) head and neck squamous cell carcinoma (HNSCC). METHODS: In this prospective study, 6 HPV- HNSCC patients underwent a total of 34 multimodality imaging examinations DW-MRI at 1.5 T Philips MRI scanner [(n = 24) pre-, during- (2-3 wk), and post-treatment (Tx), and 18F-FDG PET/CT pre- and post-Tx (n = 10)]. All patients received RT. Monoexponential modeling of the DW-MRI data yielded the imaging metric apparent diffusion coefficient (ADC) and the mean of standardized uptake value (SUV) was measured from 18F-FDG PET uptake. All patients had a clinical follow-up as the standard of care and survival status was documented at 1 year. RESULTS: There was a strong negative correlation between the mean of pretreatment ADC (ρ = -0.67, P = 0.01) and the pretreatment 18F-FDG PET SUV. The percentage (%) change in delta (∆) ADC for primary tumors and neck nodal metastases between pre- and Wk2-3 Tx were as follows: 75.4% and 61.6%, respectively, for the patient with no evidence of disease, 27.5% and 32.7%, respectively, for those patients who were alive with disease, and 26.9% and 7.31%, respectively, for those who were dead with disease. CONCLUSION: These results are preliminary in nature and are indicative, and not definitive, trends rendered by the imaging metrics due to the small sample size of HPV- HNSCC patients in a Meixoeiro Hospital of Vigo Experience.

SELECTION OF CITATIONS
SEARCH DETAIL