Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
NPJ Biodivers ; 3(1): 28, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289538

ABSTRACT

A genomic database of all Earth's eukaryotic species could contribute to many scientific discoveries; however, only a tiny fraction of species have genomic information available. In 2018, scientists across the world united under the Earth BioGenome Project (EBP), aiming to produce a database of high-quality reference genomes containing all ~1.5 million recognized eukaryotic species. As the European node of the EBP, the European Reference Genome Atlas (ERGA) sought to implement a new decentralised, equitable and inclusive model for producing reference genomes. For this, ERGA launched a Pilot Project establishing the first distributed reference genome production infrastructure and testing it on 98 eukaryotic species from 33 European countries. Here we outline the infrastructure and explore its effectiveness for scaling high-quality reference genome production, whilst considering equity and inclusion. The outcomes and lessons learned provide a solid foundation for ERGA while offering key learnings to other transnational, national genomic resource projects and the EBP.

2.
Antiviral Res ; 230: 105976, 2024 10.
Article in English | MEDLINE | ID: mdl-39117283

ABSTRACT

Coronaviruses are highly transmissible respiratory viruses that cause symptoms ranging from mild congestion to severe respiratory distress. The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the need for new antivirals with broad-acting mechanisms to combat increasing emergence of new variants. Currently, there are only a few antivirals approved for treatment of SARS-CoV-2. Previously, the rocaglate natural product silvestrol and synthetic rocaglates such as CR-1-31b were shown to have antiviral effects by inhibiting eukaryotic translation initiation factor 4A1 (eIF4A) function and virus protein synthesis. In this study, we evaluated amidino-rocaglates (ADRs), a class of synthetic rocaglates with the most potent eIF4A-inhibitory activity to-date, for inhibition of SARS-CoV-2 infection. This class of compounds showed low nanomolar potency against multiple SARS-CoV-2 variants and in multiple cell types, including human lung-derived cells, with strong inhibition of virus over host protein synthesis and low cytotoxicity. The most potent ADRs were also shown to be active against two highly pathogenic and distantly related coronaviruses, SARS-CoV and MERS-CoV. Mechanistically, cells with mutations of eIF4A1, which are known to reduce rocaglate interaction displayed reduced ADR-associated loss of cellular function, consistent with targeting of protein synthesis. Overall, ADRs and derivatives may offer new potential treatments for SARS-CoV-2 with the goal of developing a broad-acting anti-coronavirus agent.


Subject(s)
Antiviral Agents , Protein Biosynthesis , SARS-CoV-2 , Virus Replication , SARS-CoV-2/drug effects , Virus Replication/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Humans , Chlorocebus aethiops , Animals , Protein Biosynthesis/drug effects , Vero Cells , COVID-19 Drug Treatment , Benzofurans/pharmacology , Benzofurans/chemical synthesis , Benzofurans/chemistry , COVID-19/virology , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , Viral Proteins/genetics , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Eukaryotic Initiation Factor-4A/metabolism
3.
J Med Chem ; 67(16): 13737-13764, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39169825

ABSTRACT

Since the largest and most fatal Ebola virus epidemic during 2014-2016, there have been several consecutive filoviral outbreaks in recent years, including those in 2021, 2022, and 2023. Ongoing outbreak prevalence and limited FDA-approved filoviral therapeutics emphasize the need for novel small molecule treatments. Here, we showcase the structure-activity relationship development of N-substituted pyrrole-based heterocycles and their potent, submicromolar entry inhibition against diverse filoviruses in a target-based pseudovirus assay. Inhibitor antiviral activity was validated using replication-competent Ebola, Sudan, and Marburg viruses. Mutational analysis was used to map the targeted region within the Ebola virus glycoprotein. Antiviral counter-screen and phospholipidosis assays were performed to demonstrate the reduced off-target activity of these filoviral entry inhibitors. Favorable antiviral potency, selectivity, and drug-like properties of the N-substituted pyrrole-based heterocycles support their potential as broad-spectrum antifiloviral treatments.


Subject(s)
Antiviral Agents , Ebolavirus , Pyrroles , Virus Internalization , Pyrroles/pharmacology , Pyrroles/chemistry , Pyrroles/chemical synthesis , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Humans , Structure-Activity Relationship , Ebolavirus/drug effects , Virus Internalization/drug effects , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis , Filoviridae/drug effects , Marburgvirus/drug effects
4.
Eur J Med Chem ; 275: 116537, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38875806

ABSTRACT

Diphyllin is a naturally occurring lignan comprised of an aryl naphthalene lactone scaffold that demonstrates beneficial biological activities in disease models of cancer, obesity, and viral infection. A target of diphyllin and naturally occurring derivatives is the vacuolar ATPase (V-ATPase) complex. Although diphyllin-related natural products are active with in vitro models for viral entry, the potencies and unknown pharmacokinetic properties limit well-designed in vivo evaluations. Previous studies demonstrated that diphyllin derivatives have the utility of blocking the Ebola virus cell entry pathway. However, diphyllin shows limited potency and poor oral bioavailability in mice. An avenue to improve the potency was used in a new library of synthetic derivatives of diphyllin. Diphyllin derivatives exploiting ether linkages at the 4-position with one-to-three carbon spacers to an oxygen or nitrogen atom provided compounds with EC50 values ranging from 7 to 600 nM potency and selectivity up to >500 against Ebola virus in infection assays. These relative potencies are reflected in the Ebola virus infection of primary macrophages, a cell type involved in early pathogenesis. A target engagement study reveals that reducing the ATPV0a2 protein expression enhanced the potency of diphyllin derivatives to block EBOV entry, consistent with effects on the endosomal V-ATPase function. Despite the substantial enhancement of antiviral potencies, limitations were identified, including rapid clearance predicted by in vitro microsome stability assays. However, compounds with similar or improved half-lives relative to diphyllin demonstrated improved pharmacokinetic profiles in vivo. Importantly, these derivatives displayed suitable plasma levels using oral administration, establishing the feasibility of in vivo antiviral testing.


Subject(s)
Antiviral Agents , Vacuolar Proton-Translocating ATPases , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Mice , Structure-Activity Relationship , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/chemical synthesis , Humans , Molecular Structure , Ebolavirus/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Dose-Response Relationship, Drug , Lignans/pharmacology , Lignans/chemistry , Naphthalenes/pharmacology , Naphthalenes/chemistry , Naphthalenes/pharmacokinetics , Naphthalenes/chemical synthesis , Virus Internalization/drug effects
5.
bioRxiv ; 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38617272

ABSTRACT

Ebola virus (EBOV) is a high-consequence filovirus that gives rise to frequent epidemics with high case fatality rates and few therapeutic options. Here, we applied image-based screening of a genome-wide CRISPR library to systematically identify host cell regulators of Ebola virus infection in 39,085,093 million single cells. Measuring viral RNA and protein levels together with their localization in cells identified over 998 related host factors and provided detailed information about the role of each gene across the virus replication cycle. We trained a deep learning model on single-cell images to associate each host factor with predicted replication steps, and confirmed the predicted relationship for select host factors. Among the findings, we showed that the mitochondrial complex III subunit UQCRB is a post-entry regulator of Ebola virus RNA replication, and demonstrated that UQCRB inhibition with a small molecule reduced overall Ebola virus infection with an IC50 of 5 µM. Using a random forest model, we also identified perturbations that reduced infection by disrupting the equilibrium between viral RNA and protein. One such protein, STRAP, is a spliceosome-associated factor that was found to be closely associated with VP35, a viral protein required for RNA processing. Loss of STRAP expression resulted in a reduction in full-length viral genome production and subsequent production of non-infectious virus particles. Overall, the data produced in this genome-wide high-content single-cell screen and secondary screens in additional cell lines and related filoviruses (MARV and SUDV) revealed new insights about the role of host factors in virus replication and potential new targets for therapeutic intervention.

6.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38559040

ABSTRACT

Ebola virus (EBOV) protein VP24 carries out at least two critical functions. It promotes condensation of viral nucleocapsids, which is crucial for infectious virus production, and it suppresses interferon (IFN) signaling, which requires interaction with the NPI-1 subfamily of importin-α (IMPA) nuclear transport proteins. Interestingly, over-expressed IMPA leads to VP24 nuclear accumulation and a carboxy-terminus nuclear export signal (NES) has been reported, suggesting that VP24 may undergo nuclear trafficking. For the first time, we demonstrate that NPI-1 IMPA overexpression leads to the nuclear accumulation of VP24 during EBOV infection. To assess the functional impact of nuclear trafficking, we generated tetracistronic minigenomes encoding VP24 nuclear import and/or export signal mutants. The minigenomes, which also encode Renilla luciferase and viral proteins VP40 and GP, were used to generate transcription and replication competent virus-like particles (trVLPs) that can be used to assess EBOV RNA synthesis, gene expression, entry and viral particle production. With this system, we confirmed that NES or IMPA binding site mutations altered VP24 nuclear localization, demonstrating functional trafficking signals. While these mutations minimally affected transcription and replication, the trVLPs exhibited impaired infectivity and formation of shortened nucleocapsids for the IMPA binding mutant. For the NES mutants, infectivity was reduced approximately 1000-fold. The NES mutant could still suppress IFN signaling but failed to promote nucleocapsid formation. To determine whether VP24 nuclear export is required for infectivity, the residues surrounding the wildtype NES were mutated to alanine or the VP24 NES was replaced with the Protein Kinase A Inhibitor NES. While nuclear export remained intact for these mutants, infectivity was severely impaired. These data demonstrate that VP24 undergoes nuclear trafficking and illuminates a separate and critical role for the NES and surrounding sequences in infectivity and nucleocapsid assembly.

7.
Proc Natl Acad Sci U S A ; 121(7): e2316960121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38319964

ABSTRACT

The Ebola virus causes hemorrhagic fever in humans and poses a significant threat to global public health. Although two viral vector vaccines have been approved to prevent Ebola virus disease, they are distributed in the limited ring vaccination setting and only indicated for prevention of infection from orthoebolavirus zairense (EBOV)-one of three orthoebolavirus species that have caused previous outbreaks. Ebola virus glycoprotein GP mediates viral infection and serves as the primary target of neutralizing antibodies. Here, we describe a universal Ebola virus vaccine approach using a structure-guided design of candidates with hyperglycosylation that aims to direct antibody responses away from variable regions and toward conserved epitopes of GP. We first determined the hyperglycosylation landscape on Ebola virus GP and used that to generate hyperglycosylated GP variants with two to four additional glycosylation sites to mask the highly variable glycan cap region. We then created vaccine candidates by displaying wild-type or hyperglycosylated GP variants on ferritin nanoparticles (Fer). Immunization with these antigens elicited potent neutralizing antisera against EBOV in mice. Importantly, we observed consistent cross-neutralizing activity against Bundibugyo virus and Sudan virus from hyperglycosylated GP-Fer with two or three additional glycans. In comparison, elicitation of cross-neutralizing antisera was rare in mice immunized with wild-type GP-Fer. These results demonstrate a potential strategy to develop universal Ebola virus vaccines that confer cross-protective immunity against existing and emerging filovirus species.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Viral Vaccines , Humans , Animals , Mice , Antibodies, Viral , Antibodies, Neutralizing , Immune Sera
8.
Res Sq ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38352529

ABSTRACT

The interaction of host and Ebola virus (EBOV) proteins is required for establishing infection of the cell. To identify protein binding partners, a proximity-dependent protein interaction screen was performed for six EBOV proteins. Hits were computationally mapped onto a human protein-protein interactome and then annotated with viral proteins to reveal known and previously undescribed EBOV-host protein interactions and processes. Importantly, this approach efficiently arranged proteins into functional complexes associated with single viral proteins. Focused characterization of interactions between EBOV VP35 and the mRNA decapping complex demonstrated that VP35 binds the scaffold protein EDC4 through the C-terminal subdomain, with each protein found associated in EBOV-infected cells. Mechanistically, depletion of three components of the complex each similarly inhibited viral replication by reducing early viral RNA synthesis. Overall, we demonstrate successful identification of EBOV protein interaction with entire cellular machines, providing a deeper understanding of replication mechanism for therapeutic intervention.

9.
PLoS Comput Biol ; 20(2): e1011270, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324613

ABSTRACT

CyVerse, the largest publicly-funded open-source research cyberinfrastructure for life sciences, has played a crucial role in advancing data-driven research since the 2010s. As the technology landscape evolved with the emergence of cloud computing platforms, machine learning and artificial intelligence (AI) applications, CyVerse has enabled access by providing interfaces, Software as a Service (SaaS), and cloud-native Infrastructure as Code (IaC) to leverage new technologies. CyVerse services enable researchers to integrate institutional and private computational resources, custom software, perform analyses, and publish data in accordance with open science principles. Over the past 13 years, CyVerse has registered more than 124,000 verified accounts from 160 countries and was used for over 1,600 peer-reviewed publications. Since 2011, 45,000 students and researchers have been trained to use CyVerse. The platform has been replicated and deployed in three countries outside the US, with additional private deployments on commercial clouds for US government agencies and multinational corporations. In this manuscript, we present a strategic blueprint for creating and managing SaaS cyberinfrastructure and IaC as free and open-source software.


Subject(s)
Artificial Intelligence , Software , Humans , Cloud Computing , Publishing
10.
Nat Commun ; 15(1): 274, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177138

ABSTRACT

The continued emergence of highly pathogenic viruses, which either thwart immune- and small molecule-based therapies or lack interventions entirely, mandates alternative approaches, particularly for prompt and facile pre- and post-exposure prophylaxis. Many highly pathogenic viruses, including coronaviruses, employ the six-helix bundle heptad repeat membrane fusion mechanism to achieve infection. Although heptad-repeat-2 decoys can inhibit viral entry by blocking six-helix bundle assembly, the biophysical and pharmacologic liabilities of peptides have hindered their clinical development. Here, we develop a chemically stapled lipopeptide inhibitor of SARS-CoV-2 as proof-of-concept for the platform. We show that our lead compound blocks infection by a spectrum of SARS-CoV-2 variants, exhibits mucosal persistence upon nasal administration, demonstrates enhanced stability compared to prior analogs, and mitigates infection in hamsters. We further demonstrate that our stapled lipopeptide platform yields nanomolar inhibitors of respiratory syncytial, Ebola, and Nipah viruses by targeting heptad-repeat-1 domains, which exhibit strikingly low mutation rates, enabling on-demand therapeutic intervention to combat viral outbreaks.


Subject(s)
Coronavirus Infections , Lipopeptides , Humans , Lipopeptides/pharmacology , Lipopeptides/therapeutic use , Lipopeptides/chemistry , Pandemics/prevention & control
11.
Viruses ; 15(10)2023 10 11.
Article in English | MEDLINE | ID: mdl-37896854

ABSTRACT

Ebola virus disease (EVD) represents a global health threat. The etiological agents of EVD are six species of Orthoebolaviruses, with Orthoebolavirus zairense (EBOV) having the greatest public health and medical significance. EVD pathogenesis occurs as a result of broad cellular tropism of the virus, robust viral replication and a potent and dysregulated production of cytokines. In vivo, tissue macrophages are some of the earliest cells infected and contribute significantly to virus load and cytokine production. While EBOV is known to infect macrophages and to generate high titer virus in the liver, EBOV infection of liver macrophages, Kupffer cells, has not previously been examined in tissue culture or experimentally manipulated in vivo. Here, we employed primary murine Kupffer cells (KC) and an immortalized murine Kupffer cell line (ImKC) to assess EBOV-eGFP replication in liver macrophages. KCs and ImKCs were highly permissive for EBOV infection and IFN-γ polarization of these cells suppressed their permissiveness to infection. The kinetics of IFN-γ-elicited antiviral responses were examined using a biologically contained model of EBOV infection termed EBOV ΔVP30. The antiviral activity of IFN-γ was transient, but a modest ~3-fold reduction of infection persisted for as long as 6 days post-treatment. To assess the interferon-stimulated gene products (ISGs) responsible for protection, the efficacy of secreted ISGs induced by IFN-γ was evaluated and secreted ISGs failed to block EBOV ΔVP30. Our studies define new cellular tools for the study of EBOV infection that can potentially aid the development of new antiviral therapies. Furthermore, our data underscore the importance of macrophages in EVD pathogenesis and those IFN-γ-elicited ISGs that help to control EBOV infection.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Mice , Interferon-gamma/pharmacology , Kupffer Cells , Ebolavirus/genetics , Interferons/pharmacology , Antiviral Agents/pharmacology
12.
bioRxiv ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37904982

ABSTRACT

Ebola virus causes hemorrhagic fever in humans and poses a significant threat to global public health. Although two viral vector vaccines have been approved to prevent Ebola virus disease, they are distributed in the limited ring vaccination setting and only indicated for prevention of infection from orthoebolavirus zairense (EBOV) - one of three orthoebolavirus species that have caused previous outbreaks. Ebola virus glycoprotein GP mediates viral infection and serves as the primary target of neutralizing antibodies. Here we describe a universal Ebola virus vaccine approach using structure-guided design of candidates with hyperglycosylation that aims to direct antibody responses away from variable regions and toward conserved epitopes of GP. We first determined the hyperglycosylation landscape on Ebola virus GP and used that to generate hyperglycosylated GP variants with two to four additional glycosylation sites to mask the highly variable glycan cap region. We then created vaccine candidates by displaying wild-type or hyperglycosylated GP variants on ferritin nanoparticles (Fer). Immunization with these antigens elicited potent neutralizing antisera against EBOV in mice. Importantly, we observed consistent cross-neutralizing activity against Bundibugyo virus and Sudan virus from hyperglycosylated GP-Fer with two or three additional glycans. In comparison, elicitation of cross-neutralizing antisera was rare in mice immunized with wild-type GP-Fer. These results demonstrate a potential strategy to develop universal Ebola virus vaccines that confer cross-protective immunity against existing and emerging filovirus species.

14.
J Mol Biol ; 435(20): 168241, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37598728

ABSTRACT

Viral inclusion bodies (IBs) are potential sites of viral replication and assembly. How viral IBs form remains poorly defined. Here we describe a combined biophysical and cellular approach to identify the components necessary for IB formation during Ebola virus (EBOV) infection. We find that the eNP0VP35 complex containing Ebola nucleoprotein (eNP) and viral protein 35 (eVP35), the functional equivalents of nucleoprotein (N) and phosphoprotein (P) in non-segmented negative strand viruses (NNSVs), phase separates to form inclusion bodies. Phase separation of eNP0VP35 is reversible and modulated by ionic strength. The multivalency of eVP35, and not eNP, is also critical for phase separation. Furthermore, overexpression of an eVP35 peptide disrupts eNP0VP35 complex formation, leading to reduced frequency of IB formation and limited viral infection. Together, our results show that upon EBOV infection, the eNP0VP35 complex forms the minimum unit to drive IB formation and viral replication.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Inclusion Bodies , Nucleoproteins , Virus Replication , Humans , Ebolavirus/metabolism , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/virology , Inclusion Bodies/virology , Nucleoproteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism
15.
iScience ; 26(5): 106601, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37095859

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks multiple human proteins during infection and viral replication. To examine whether any viral proteins employ human E3 ubiquitin ligases, we evaluated the stability of SARS-CoV-2 proteins with inhibition of the ubiquitin proteasome pathway. Using genetic screens to dissect the molecular machinery involved in the degradation of candidate viral proteins, we identified human E3 ligase RNF185 as a regulator of protein stability for the SARS-CoV-2 envelope protein. We found that RNF185 and the SARS-CoV-2 envelope co-localize to the endoplasmic reticulum (ER). Finally, we demonstrate that the depletion of RNF185 significantly increases SARS-CoV-2 viral titer in a cellular model. Modulation of this interaction could provide opportunities for novel antiviral therapies.

16.
Cell Host Microbe ; 31(2): 260-272.e7, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36708708

ABSTRACT

Monoclonal antibodies can provide important pre- or post-exposure protection against infectious disease for those not yet vaccinated or in individuals that fail to mount a protective immune response after vaccination. Inmazeb (REGN-EB3), a three-antibody cocktail against Ebola virus, lessened disease and improved survival in a controlled trial. Here, we present the cryo-EM structure at 3.1 Å of the Ebola virus glycoprotein, determined without symmetry averaging, in a simultaneous complex with the antibodies in the Inmazeb cocktail. This structure allows the modeling of previously disordered portions of the glycoprotein glycan cap, maps the non-overlapping epitopes of Inmazeb, and illuminates the basis for complementary activities and residues critical for resistance to escape by these and other clinically relevant antibodies. We further provide direct evidence that Inmazeb protects against the rapid emergence of escape mutants, whereas monotherapies even against conserved epitopes do not, supporting the benefit of a cocktail versus a monotherapy approach.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Antibodies, Viral , Glycoproteins , Epitopes , Antibodies, Neutralizing
17.
J Med Virol ; 95(1): e28157, 2023 01.
Article in English | MEDLINE | ID: mdl-36117402

ABSTRACT

Coronavirus disease 2019 (COVID-19) remains a major public health concern, and vaccine unavailability, hesitancy, or failure underscore the need for discovery of efficacious antiviral drug therapies. Numerous approved drugs target protein kinases associated with viral life cycle and symptoms of infection. Repurposing of kinase inhibitors is appealing as they have been vetted for safety and are more accessible for COVID-19 treatment. However, an understanding of drug mechanism is needed to improve our understanding of the factors involved in pathogenesis. We tested the in vitro activity of three kinase inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including inhibitors of AXL kinase, a host cell factor that contributes to successful SARS-CoV-2 infection. Using multiple cell-based assays and approaches, gilteritinib, nintedanib, and imatinib were thoroughly evaluated for activity against SARS-CoV-2 variants. Each drug exhibited antiviral activity, but with stark differences in potency, suggesting differences in host dependency for kinase targets. Importantly, for gilteritinib, the amount of compound needed to achieve 90% infection inhibition, at least in part involving blockade of spike protein-mediated viral entry and at concentrations not inducing phospholipidosis (PLD), approached a clinically achievable concentration. Knockout of AXL, a target of gilteritinib and nintedanib, impaired SARS-CoV-2 variant infectivity, supporting a role for AXL in SARS-CoV-2 infection and supporting further investigation of drug-mediated AXL inhibition as a COVID-19 treatment. This study supports further evaluation of AXL-targeting kinase inhibitors as potential antiviral agents and treatments for COVID-19. Additional mechanistic studies are needed to determine underlying differences in virus response.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , COVID-19 Drug Treatment , Drug Repositioning , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Spike Glycoprotein, Coronavirus/metabolism
18.
Microbiome ; 10(1): 176, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36258257

ABSTRACT

BACKGROUND: Amplicon sequencing is an established and cost-efficient method for profiling microbiomes. However, many available tools to process this data require both bioinformatics skills and high computational power to process big datasets. Furthermore, there are only few tools that allow for long read amplicon data analysis. To bridge this gap, we developed the LotuS2 (less OTU scripts 2) pipeline, enabling user-friendly, resource friendly, and versatile analysis of raw amplicon sequences. RESULTS: In LotuS2, six different sequence clustering algorithms as well as extensive pre- and post-processing options allow for flexible data analysis by both experts, where parameters can be fully adjusted, and novices, where defaults are provided for different scenarios. We benchmarked three independent gut and soil datasets, where LotuS2 was on average 29 times faster compared to other pipelines, yet could better reproduce the alpha- and beta-diversity of technical replicate samples. Further benchmarking a mock community with known taxon composition showed that, compared to the other pipelines, LotuS2 recovered a higher fraction of correctly identified taxa and a higher fraction of reads assigned to true taxa (48% and 57% at species; 83% and 98% at genus level, respectively). At ASV/OTU level, precision and F-score were highest for LotuS2, as was the fraction of correctly reported 16S sequences. CONCLUSION: LotuS2 is a lightweight and user-friendly pipeline that is fast, precise, and streamlined, using extensive pre- and post-ASV/OTU clustering steps to further increase data quality. High data usage rates and reliability enable high-throughput microbiome analysis in minutes. AVAILABILITY: LotuS2 is available from GitHub, conda, or via a Galaxy web interface, documented at http://lotus2.earlham.ac.uk/ . Video Abstract.


Subject(s)
Software , Soil , RNA, Ribosomal, 16S , Reproducibility of Results , Sequence Analysis , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods
19.
Viruses ; 14(9)2022 08 28.
Article in English | MEDLINE | ID: mdl-36146710

ABSTRACT

The replication of Ebola virus (EBOV) is dependent upon actin functionality, especially at cell entry through macropinocytosis and at release of virus from cells. Previously, major actin-regulatory factors involved in actin nucleation, such as Rac1 and Arp2/3, were shown important in both steps. However, downstream of nucleation, many other cell factors are needed to control actin dynamics. How these regulate EBOV infection remains largely unclear. Here, we identified the actin-regulating protein, CAPG, as important for EBOV replication. Notably, knockdown of CAPG specifically inhibited viral infectivity and yield of infectious particles. Cell-based mechanistic analysis revealed a requirement of CAPG for virus production from infected cells. Proximity ligation and split-green fluorescent protein reconstitution assays revealed strong association of CAPG with VP40 that was mediated through the S1 domain of CAPG. Overall, CAPG is a novel host factor regulating EBOV infection through connecting actin filament stabilization to viral egress from cells.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Actins/metabolism , Ebolavirus/physiology , Green Fluorescent Proteins/metabolism , Humans , Microfilament Proteins/metabolism , Nuclear Proteins/metabolism , Viral Matrix Proteins/metabolism , Virus Release/physiology
20.
iScience ; 25(9): 104925, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35992305

ABSTRACT

Pharmacologically active compounds with known biological targets were evaluated for inhibition of SARS-CoV-2 infection in cell and tissue models to help identify potent classes of active small molecules and to better understand host-virus interactions. We evaluated 6,710 clinical and preclinical compounds targeting 2,183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target, and cell interactome produced cellular networks important for infection. This analysis revealed 389 small molecules with micromolar to low nanomolar activities, representing >12 scaffold classes and 813 host targets. Representatives were evaluated for mechanism of action in stable and primary human cell models with SARS-CoV-2 variants and MERS-CoV. One promising candidate, obatoclax, significantly reduced SARS-CoV-2 viral lung load in mice. Ultimately, this work establishes a rigorous approach for future pharmacological and computational identification of host factor dependencies and treatments for viral diseases.

SELECTION OF CITATIONS
SEARCH DETAIL