Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Vaccine ; 41(2): 476-485, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36481109

ABSTRACT

BACKGROUND: Although there has developed an increased interest in the vaccines BNT1622b2 (Pfizer/BioNTech), mRNA-1273 (Moderna/NIAID), and ChAdOx1 nCoV-19 (AstraZeneca/University of Oxford), there are still few reports describing the immune response induced by different vaccine platforms in real-world settings of low-income countries. Here, we proposed to analyse the humoral immune response elicited by the primary vaccines used in Argentina from July-December 2021. METHODS: Anti-SARS-CoV-2-Spike-RBD IgG and neutralising antibodies were assayed by ELISA in a total of 871 serum samples obtained from 376 volunteers from an educational staff. The individuals were vaccinated with BBIBP-CorV (Sinopharm), ChAdOx1 nCoV-19 (AstraZeneca/University of Oxford, AZ), Gam-COVID-Vac (Sputnik V, SpV) or combined vaccines (mostly SpV and mRNA-1273, Moderna). The antibody response was analysed several days after the initial vaccination (20, 40, 120 and 180 days). RESULTS: After receiving at least one dose of the COVID-19 vaccine, we detected 93.34% of seroprevalence. Previously SARS-CoV-2 infected showed higher antibody concentrations compared with naïve vaccinees. Six months after the initial vaccination, combined vaccination induced higher anti-SARS-CoV-2 antibody levels than the other vaccines in naïve volunteers. However, we did not find differences in the neutralising responses after any vaccine from naïve vaccines or between the naïve and previously infected volunteers on day 120 after vaccination. CONCLUSIONS: Our long-term analysis of volunteers from the educational system provides data in a real-world context, showing the benefits of a boost dose still in previously infected volunteers, and suggesting the advantages of a heterologous prime-boost schedule.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , ChAdOx1 nCoV-19 , Antibody Formation , 2019-nCoV Vaccine mRNA-1273 , Argentina , Seroepidemiologic Studies , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Viral , Immunoglobulin G
2.
Biomedicines ; 10(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36289832

ABSTRACT

Nitric oxide (NO), a signaling molecule, regulates multiple biological functions, including a variety of physiological and pathological processes. In this regard, NO participates in cutaneous inflammations, modulation of mitochondrial functions, vascular diseases, COVID-19, neurologic diseases, and obesity. It also mediates changes in the skeletal muscle function. Chronic granulomatous disease (CGD) is a primary immunodeficiency disorder characterized by the malfunction of phagocytes caused by mutations in some of the genes encoding subunits of the superoxide-generating phagocyte NADPH (NOX). The literature consulted shows that there is a relationship between the production of NO and the NADPH oxidase system, which regulates the persistence of NO in the medium. Nevertheless, the underlying mechanisms of the effects of NO on CGD remain unknown. In this paper, we briefly review the regulatory role of NO in CGD and its potential underlying mechanisms.

3.
Biomolecules ; 11(11)2021 11 04.
Article in English | MEDLINE | ID: mdl-34827634

ABSTRACT

Yersinia enterocolitica (Ye) inserts outer proteins (Yops) into cytoplasm to infect host cells. However, in spite of considerable progress, the mechanisms implicated in this process, including the association of Yops with host proteins, remain unclear. Here, we evaluated the functional role of Galectin-1 (Gal1), an endogenous ß-galactoside-binding protein, in modulating Yop interactions with host cells. Our results showed that Gal1 binds to Yops in a carbohydrate-dependent manner. Interestingly, Gal1 binding to Yops protects these virulence factors from trypsin digestion. Given that early control of Ye infection involves activation of macrophages, we evaluated the role of Gal1 and YopP in the modulation of macrophage function. Although Gal1 and YopP did not influence production of superoxide anion and/or TNF by Ye-infected macrophages, they coordinately inhibited nitric oxide (NO) production. Notably, recombinant Gal1 (rGal1) did not rescue NO increase observed in Lgals1-/- macrophages infected with the YopP mutant Ye ∆yopP. Whereas NO induced apoptosis in macrophages, no significant differences in cell death were detected between Gal1-deficient macrophages infected with Ye ∆yopP, and WT macrophages infected with Ye wt. Strikingly, increased NO production was found in WT macrophages treated with MAPK inhibitors and infected with Ye wt. Finally, rGal1 administration did not reverse the protective effect in Peyer Patches (PPs) of Lgals1-/- mice infected with Ye ∆yopP. Our study reveals a cooperative role of YopP and endogenous Gal1 during Ye infection.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Galectin 1/metabolism , Immunity , Nitric Oxide/biosynthesis , Yersinia enterocolitica/immunology , Amino Acid Sequence , Animals , Bacterial Outer Membrane Proteins/chemistry , Mice, Inbred C57BL , Mice, Knockout , Peptide Hydrolases/metabolism , Protein Binding , Proteolysis , Proteomics , Virulence Factors/metabolism , Yersinia enterocolitica/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...