Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cell ; 59(1): 9-21, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26051177

ABSTRACT

Within bacterial populations, a small fraction of persister cells is transiently capable of surviving exposure to lethal doses of antibiotics. As a bet-hedging strategy, persistence levels are determined both by stochastic induction and by environmental stimuli called responsive diversification. Little is known about the mechanisms that link the low frequency of persisters to environmental signals. Our results support a central role for the conserved GTPase Obg in determining persistence in Escherichia coli in response to nutrient starvation. Obg-mediated persistence requires the stringent response alarmone (p)ppGpp and proceeds through transcriptional control of the hokB-sokB type I toxin-antitoxin module. In individual cells, increased Obg levels induce HokB expression, which in turn results in a collapse of the membrane potential, leading to dormancy. Obg also controls persistence in Pseudomonas aeruginosa and thus constitutes a conserved regulator of antibiotic tolerance. Combined, our findings signify an important step toward unraveling shared genetic mechanisms underlying persistence.


Subject(s)
Bacterial Proteins/genetics , Bacterial Toxins/biosynthesis , Drug Resistance, Bacterial/physiology , Escherichia coli Proteins/biosynthesis , Escherichia coli/genetics , GTP-Binding Proteins/genetics , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Toxins/genetics , Cell Membrane/physiology , Escherichia coli Proteins/genetics , Membrane Potentials/genetics , Microbial Sensitivity Tests , Protein Structure, Tertiary/genetics
SELECTION OF CITATIONS
SEARCH DETAIL