Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; : 173669, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38839005

ABSTRACT

A multitude of anthropogenic stressors impact biological communities and ecosystem processes in urban streams. Prominent among them are salinization, increased temperature, and altered flow regimes, all of which can affect microbial decomposer communities and litter decomposition, a fundamental ecosystem process in streams. Impairments caused by these stressors individually or in combination and recovery of communities and ecosystem processes after release from these stressors are not well understood. To improve our understanding of multiple stressors impacts we performed an outdoor stream mesocosm experiment with 64 experimental units to assess the response of microbial litter decomposers and decomposition. The three stressors we applied in a full-factorial design were increased salinity (NaCl addition, 0.53 mS cm-1 above ambient), elevated temperature (3.5 °C above ambient), and reduced flow velocity (3.5 vs 14.2 cm s-1). After two weeks of stressor exposure (first sampling) and two subsequent weeks of recovery (second sampling), we determined leaf-associated microbial respiration, fungal biomass, and the sporulation activity and community composition of aquatic hyphomycetes in addition to decomposition rates of black alder (Alnus glutinosa) leaves confined in fine-mesh litter bags. Microbial colonization of the litter was accompanied by significant mass loss in all mesocosms. However, there was little indication that mass loss, microbial respiration, fungal biomass, sporulation rate or community composition of aquatic hyphomycetes was strongly affected by either single stressors or their interactions. Two exceptions were temperature effects on sporulation and decomposition rate. Similarly, no notable differences among mesocosms were observed after the recovery phase. These results suggest that microbial decomposers and leaf litter decomposition are either barely impaired by exposure to the tested stressors at the levels applied in our experiment, or that communities in restored urban streams are well adapted to cope with these stressor levels.

2.
Sci Total Environ ; 934: 173105, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750737

ABSTRACT

The decline of river and stream biodiversity results from multiple simultaneous occuring stressors, yet few studies explore responses explore responses across various taxonomic groups at the same locations. In this study, we address this shortcoming by using a coherent data set to study the association of nine commonly occurring stressors (five chemical, one morphological and three hydraulic) with five taxonomic groups (bacteria, fungi, diatoms, macro-invertebrates and fish). According to studies on single taxonomic groups, we hypothesise that gradients of chemical stressors structure community composition of all taxonomic groups, while gradients of hydraulic and morphological stressors are mainly related to larger organisms such as benthic macro-invertebrates and fish. Organisms were sampled over two years at 20 sites in two catchments: a recently restored urban lowland catchment (Boye) and a moderately disturbed rural mountainous catchment (Kinzig). Dissimilarity matrices were computed for each taxonomic group within a catchment. Taxonomic dissimilarities between sites were linked to stressor dissimilarities using multivariable Generalized Linear Mixed Models. Stressor gradients were longer in the Boye, but did in contrast to the Kinzig not cover low stress intensities. Accordingly, responses of the taxonomic groups were stronger in the Kinzig catchment than in the recently restored Boye catchment. The discrepancy between catchments underlines that associations to stressors strongly depend on which part of the stressor gradient is covered in a catchment. All taxonomic groups were related to conductivity. Bacteria, fungi and macro-invertebrates change with dissolved oxygen, and bacteria and fungi with total nitrogen. Morphological and hydraulic stressors had minor correlations with bacteria, fungi and diatoms, while macro-invertebrates were strongly related to fine sediment and discharge, and fish to high flow peaks. The results partly support our hypotheses about the differential associations of the different taxonomic groups with the stressors.


Subject(s)
Biodiversity , Environmental Monitoring , Rivers , Rivers/microbiology , Animals , Fungi , Diatoms/physiology , Invertebrates/physiology , Fishes , Bacteria/classification , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 926: 171849, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38537828

ABSTRACT

Urban streams are exposed to a variety of anthropogenic stressors. Freshwater salinization is a key stressor in these ecosystems that is predicted to be further exacerbated by climate change, which causes simultaneous changes in flow parameters, potentially resulting in non-additive effects on aquatic ecosystems. However, the effects of salinization and flow velocity on urban streams are still poorly understood as multiple-stressor experiments are often conducted at pristine rather than urban sites. Therefore, we conducted a mesocosm experiment at the Boye River, a recently restored stream located in a highly urbanized area in Western Germany, and applied recurrent pulses of salinity along a gradient (NaCl, 9 h daily of +0 to +2.5 mS/cm) in combination with normal and reduced current velocities (20 cm/s vs. 10 cm/s). Using a comprehensive assessment across multiple organism groups (macroinvertebrates, eukaryotic algae, fungi, parasites) and ecosystem functions (primary production, organic-matter decomposition), we show that flow velocity reduction has a pervasive impact, causing community shifts for almost all assessed organism groups (except fungi) and inhibiting organic-matter decomposition. Salinization affected only dynamic components of community assembly by enhancing invertebrate emigration via drift and reducing fungal reproduction. We caution that the comparatively small impact of salt in our study can be due to legacy effects from past salt pollution by coal mining activities >30 years ago. Nevertheless, our results suggest that urban stream management should prioritize the continuity of a minimum discharge to maintain ecosystem integrity. Our study exemplifies a holistic approach for the assessment of multiple-stressor impacts on streams, which is needed to inform the establishment of a salinity threshold above which mitigation actions must be taken.


Subject(s)
Ecosystem , Rivers , Animals , Invertebrates/physiology , Fresh Water , Sodium Chloride
4.
Sci Total Environ ; 872: 162196, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36781140

ABSTRACT

Our capacity to predict trajectories of ecosystem degradation and recovery is limited, especially when impairments are caused by multiple stressors. Recovery may be fast or slow and either complete or partial, sometimes result in novel ecosystem states or even fail completely. Here, we introduce the Asymmetric Response Concept (ARC) that provides a basis for exploring and predicting the pace and magnitude of ecological responses to, and release from, multiple stressors. The ARC holds that three key mechanisms govern population, community and ecosystem trajectories. Stress tolerance is the main mechanism determining responses to increasing stressor intensity, whereas dispersal and biotic interactions predominantly govern responses to the release from stressors. The shifting importance of these mechanisms creates asymmetries between the ecological trajectories that follow increasing and decreasing stressor intensities. This recognition helps to understand multiple stressor impacts and to predict which measures will restore communities that are resistant to restoration.


Subject(s)
Ecosystem , Rivers
5.
Mol Ecol ; 30(9): 2162-2177, 2021 05.
Article in English | MEDLINE | ID: mdl-33639035

ABSTRACT

Despite small freshwater ecosystems being biodiversity reservoirs and contributing significantly to greenhouse fluxes, their microbial communities remain largely understudied. Yet, microorganisms intervene in biogeochemical cycling and impact water quality. Because of their small size, these ecosystems are in principle more sensitive to disturbances, seasonal variation and pluri-annual climate change. However, how microbial community composition varies over space and time, and whether archaeal, bacterial and microbial eukaryote communities behave similarly remain unanswered. Here, we aim to unravel the composition and intra/interannual temporal dynamic patterns for archaea, bacteria and microbial eukaryotes in a set of small freshwater ecosystems. We monitored archaeal and bacterial community composition during 24 consecutive months in four ponds and one brook from northwestern France by 16S rRNA gene amplicon sequencing (microbial eukaryotes were previously investigated for the same systems). Unexpectedly for oxic environments, bacterial Candidate Phyla Radiation (CPR) were highly diverse and locally abundant. Our results suggest that microbial community structure is mainly driven by environmental conditions acting over space (ecosystems) and time (seasons). A low proportion of operational taxonomic units (OTUs) (<1%) was shared by the five ecosystems despite their geographical proximity (2-9 km away), making microbial communities almost unique in each ecosystem and highlighting the strong selective influence of local environmental conditions. Marked and similar seasonality patterns were observed for archaea, bacteria and microbial eukaryotes in all ecosystems despite strong turnovers of rare OTUs. Over the 2-year survey, microbial community composition varied despite relatively stable environmental parameters. This suggests that biotic associations play an important role in interannual community assembly.


Subject(s)
Ecosystem , Microbiota , Archaea/genetics , Biodiversity , France , Fresh Water , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
6.
Environ Microbiol ; 23(3): 1436-1451, 2021 03.
Article in English | MEDLINE | ID: mdl-33270368

ABSTRACT

Identifying which abiotic and biotic factors determine microbial community assembly is crucial to understand ecological processes and predict how communities will respond to environmental change. While global surveys aim at addressing this question in the world's oceans, equivalent studies in large freshwater systems are virtually lacking. Being the oldest, deepest and most voluminous freshwater lake on Earth, Lake Baikal offers a unique opportunity to test the effect of horizontal versus vertical gradients in community structure. Here, we characterized the structure of planktonic microbial eukaryotic communities (0.2-30 µm cell size) along a North-South latitudinal gradient (~600 km) from samples collected in coastal and pelagic waters and from surface to the deepest zones (5-1400 m) using an 18S rRNA gene metabarcoding approach. Our results show complex and diverse protist communities dominated by alveolates (ciliates and dinoflagellates), ochrophytes and holomycotan lineages, with cryptophytes, haptophytes, katablepharids and telonemids in moderate abundance and many low-frequency lineages, including several typical marine members, such as diplonemids, syndinians and radiolarians. Depth had a strong significant effect on protist community stratification. By contrast, the effect of the latitudinal gradient was marginal and no significant difference was observed between coastal and surface open water communities. Co-occurrence network analyses showed that epipelagic communities were significantly more interconnected than communities from the dark water column and suggest specific biotic interactions between autotrophic, heterotrophic and parasitic lineages that influence protist community structure. Since climate change is rapidly affecting Siberia and Lake Baikal, our comprehensive protist survey constitutes a useful reference to monitor ongoing community shifts.


Subject(s)
Dinoflagellida , Microbiota , Plankton , Lakes , Oceans and Seas , Plankton/genetics
7.
Parasitology ; 145(8): 1020-1026, 2018 07.
Article in English | MEDLINE | ID: mdl-29229008

ABSTRACT

The round goby, Neogobius melanostomus, is a Ponto-Caspian fish considered as an invasive species in a wide range of aquatic ecosystems. To understand the role that parasites may play in its successful invasion across Western Europe, we investigated the parasitic diversity of the round goby along its invasion corridor, from the Danube to the Upper Rhine rivers, using data from literature and a molecular barcoding approach, respectively. Among 1666 parasites extracted from 179 gobies of the Upper Rhine, all of the 248 parasites barcoded on the c oxidase subunit I gene were identified as Pomphorhynchus laevis. This lack of macroparasite diversity was interpreted as a loss of parasites along its invasion corridor without spillback compensation. The genetic diversity of P. laevis was represented by 33 haplotypes corresponding to a haplotype diversity of 0·65 ± 0·032, but a weak nucleotide diversity of 0·0018 ± 0·00015. Eight of these haplotypes were found in 88·4% of the 248 parasites. These haplotypes belong to a single lineage so far restricted to the Danube, Vistula and Volga rivers (Eastern Europe). This result underlines the exotic status of this Ponto-Caspian lineage in the Upper Rhine, putatively disseminated by the round goby along its invasion corridor.


Subject(s)
Acanthocephala/genetics , Genetic Variation , Helminthiasis, Animal/epidemiology , Perciformes/parasitology , Rivers/parasitology , Animals , Biodiversity , DNA Barcoding, Taxonomic , Electron Transport Complex IV/genetics , Europe, Eastern/epidemiology , France/epidemiology , Haplotypes , High-Throughput Nucleotide Sequencing , Introduced Species , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...