Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Emerg Infect Dis ; 29(12): 2426-2432, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37856204

ABSTRACT

During the 2022 multinational outbreak of monkeypox virus (MPXV) infection, the antiviral drug tecovirimat (TPOXX; SIGA Technologies, Inc., https://www.siga.com) was deployed in the United States on a large scale for the first time. The MPXV F13L gene homologue encodes the target of tecovirimat, and single amino acid changes in F13 are known to cause resistance to tecovirimat. Genomic sequencing identified 11 mutations previously reported to cause resistance, along with 13 novel mutations. Resistant phenotype was determined using a viral cytopathic effect assay. We tested 124 isolates from 68 patients; 96 isolates from 46 patients were found to have a resistant phenotype. Most resistant isolates were associated with severely immunocompromised mpox patients on multiple courses of tecovirimat treatment, whereas most isolates identified by routine surveillance of patients not treated with tecovirimat remained sensitive. The frequency of resistant viruses remains relatively low (<1%) compared with the total number of patients treated with tecovirimat.


Subject(s)
Mpox (monkeypox) , Humans , United States/epidemiology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzamides/therapeutic use , Biological Assay , Monkeypox virus
6.
Science ; 378(6619): 560-565, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36264825

ABSTRACT

Monkeypox is a viral zoonotic disease endemic in Central and West Africa. In May 2022, dozens of non-endemic countries reported hundreds of monkeypox cases, most with no epidemiological link to Africa. We identified two lineages of monkeypox virus (MPXV) among two 2021 and seven 2022 US monkeypox cases: the major 2022 outbreak variant called B.1 and a minor contemporaneously sampled variant called A.2. Analyses of mutations among these two variants revealed an extreme preference for GA-to-AA mutations indicative of human APOBEC3 cytosine deaminase activity among Clade IIb MPXV (previously West African, Nigeria) sampled since 2017. Such mutations were not enriched within other MPXV clades. These findings suggest that APOBEC3 editing may be a recurrent and a dominant driver of MPXV evolution within the current outbreak.


Subject(s)
APOBEC Deaminases , Host-Pathogen Interactions , Monkeypox virus , Mpox (monkeypox) , RNA Editing , Humans , Mpox (monkeypox)/enzymology , Mpox (monkeypox)/virology , Monkeypox virus/genetics , Monkeypox virus/isolation & purification , Nigeria/epidemiology , United States/epidemiology , Mutation , Evolution, Molecular , APOBEC Deaminases/metabolism , Adenosine/genetics , Cytidine/genetics
7.
MMWR Morb Mortal Wkly Rep ; 71(36): 1155-1158, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36074752

ABSTRACT

Since May 2022, approximately 20,000 cases of monkeypox have been identified in the United States, part of a global outbreak occurring in approximately 90 countries and currently affecting primarily gay, bisexual, and other men who have sex with men (MSM) (1). Monkeypox virus (MPXV) spreads from person to person through close, prolonged contact; a small number of cases have occurred in populations who are not MSM (e.g., women and children), and testing is recommended for persons who meet the suspected case definition* (1). CDC previously developed five real-time polymerase chain reaction (PCR) assays for detection of orthopoxviruses from lesion specimens (2,3). CDC was granted 510(k) clearance for the nonvariola-orthopoxvirus (NVO)-specific PCR assay by the Food and Drug Administration. This assay was implemented within the Laboratory Response Network (LRN) in the early 2000s and became critical for early detection of MPXV and implementation of public health action in previous travel-associated cases as well as during the current outbreak (4-7). PCR assays (NVO and other Orthopoxvirus laboratory developed tests [LDT]) represent the primary tool for monkeypox diagnosis. These tests are highly sensitive, and cross-contamination from other MPXV specimens being processed, tested, or both alongside negative specimens can occasionally lead to false-positive results. This report describes three patients who had atypical rashes and no epidemiologic link to a monkeypox case or known risk factors; these persons received diagnoses of monkeypox based on late cycle threshold (Ct) values ≥34, which were false-positive test results. The initial diagnoses were followed by administration of antiviral treatment (i.e., tecovirimat) and JYNNEOS vaccine postexposure prophylaxis (PEP) to patients' close contacts. After receiving subsequent testing, none of the three patients was confirmed to have monkeypox. Knowledge gained from these and other cases resulted in changes to CDC guidance. When testing for monkeypox in specimens from patients without an epidemiologic link or risk factors or who do not meet clinical criteria (or where these are unknown), laboratory scientists should reextract and retest specimens with late Ct values (based on this report, Ct ≥34 is recommended) (8). CDC can be consulted for complex cases including those that appear atypical or questionable cases and can perform additional viral species- and clade-specific PCR testing and antiorthopoxvirus serologic testing.


Subject(s)
Communicable Diseases , Mpox (monkeypox) , Orthopoxvirus , Sexual and Gender Minorities , Animals , Child , Female , Homosexuality, Male , Humans , Male , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Monkeypox virus/genetics , Orthopoxvirus/genetics , Travel , United States/epidemiology
8.
MMWR Morb Mortal Wkly Rep ; 71(28): 904-907, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35834423

ABSTRACT

As part of public health preparedness for infectious disease threats, CDC collaborates with other U.S. public health officials to ensure that the Laboratory Response Network (LRN) has diagnostic tools to detect Orthopoxviruses, the genus that includes Variola virus, the causative agent of smallpox. LRN is a network of state and local public health, federal, U.S. Department of Defense (DOD), veterinary, food, and environmental testing laboratories. CDC developed, and the Food and Drug Administration (FDA) granted 510(k) clearance* for the Non-variola Orthopoxvirus Real-time PCR Primer and Probe Set (non-variola Orthopoxvirus [NVO] assay), a polymerase chain reaction (PCR) diagnostic test to detect NVO. On May 17, 2022, CDC was contacted by the Massachusetts Department of Public Health (DPH) regarding a suspected case of monkeypox, a disease caused by the Orthopoxvirus Monkeypox virus. Specimens were collected and tested by the Massachusetts DPH public health laboratory with LRN testing capability using the NVO assay. Nationwide, 68 LRN laboratories had capacity to test approximately 8,000 NVO tests per week during June. During May 17-June 30, LRN laboratories tested 2,009 specimens from suspected monkeypox cases. Among those, 730 (36.3%) specimens from 395 patients were positive for NVO. NVO-positive specimens from 159 persons were confirmed by CDC to be monkeypox; final characterization is pending for 236. Prompt identification of persons with infection allowed rapid response to the outbreak, including isolation and treatment of patients, administration of vaccines, and other public health action. To further facilitate access to testing and increase convenience for providers and patients by using existing provider-laboratory relationships, CDC and LRN are supporting five large commercial laboratories with a national footprint (Aegis Science, LabCorp, Mayo Clinic Laboratories, Quest Diagnostics, and Sonic Healthcare) to establish NVO testing capacity of 10,000 specimens per week per laboratory. On July 6, 2022, the first commercial laboratory began accepting specimens for NVO testing based on clinician orders.


Subject(s)
Diagnostic Techniques and Procedures , Disease Outbreaks , Mpox (monkeypox) , Disease Outbreaks/prevention & control , Humans , Laboratories , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Orthopoxvirus , United States/epidemiology , Variola virus
9.
MMWR Morb Mortal Wkly Rep ; 71(23): 764-769, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35679181

ABSTRACT

On May 17, 2022, the Massachusetts Department of Public Health (MDPH) Laboratory Response Network (LRN) laboratory confirmed the presence of orthopoxvirus DNA via real-time polymerase chain reaction (PCR) from lesion swabs obtained from a Massachusetts resident. Orthopoxviruses include Monkeypox virus, the causative agent of monkeypox. Subsequent real-time PCR testing at CDC on May 18 confirmed that the patient was infected with the West African clade of Monkeypox virus. Since then, confirmed cases* have been reported by nine states. In addition, 28 countries and territories,† none of which has endemic monkeypox, have reported laboratory-confirmed cases. On May 17, CDC, in coordination with state and local jurisdictions, initiated an emergency response to identify, monitor, and investigate additional monkeypox cases in the United States. This response has included releasing a Health Alert Network (HAN) Health Advisory, developing interim public health and clinical recommendations, releasing guidance for LRN testing, hosting clinician and public health partner outreach calls, disseminating health communication messages to the public, developing protocols for use and release of medical countermeasures, and facilitating delivery of vaccine postexposure prophylaxis (PEP) and antivirals that have been stockpiled by the U.S. government for preparedness and response purposes. On May 19, a call center was established to provide guidance to states for the evaluation of possible cases of monkeypox, including recommendations for clinical diagnosis and orthopoxvirus testing. The call center also gathers information about possible cases to identify interjurisdictional linkages. As of May 31, this investigation has identified 17§ cases in the United States; most cases (16) were diagnosed in persons who identify as gay, bisexual, or men who have sex with men (MSM). Ongoing investigation suggests person-to-person community transmission, and CDC urges health departments, clinicians, and the public to remain vigilant, institute appropriate infection prevention and control measures, and notify public health authorities of suspected cases to reduce disease spread. Public health authorities are identifying cases and conducting investigations to determine possible sources and prevent further spread. This activity was reviewed by CDC and conducted consistent with applicable federal law and CDC policy.¶.


Subject(s)
Malaria , Mpox (monkeypox) , Sexual and Gender Minorities , Disease Outbreaks , Homosexuality, Male , Humans , Malaria/diagnosis , Male , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Population Surveillance , Travel , United States/epidemiology
10.
MMWR Morb Mortal Wkly Rep ; 71(14): 509-516, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35389974

ABSTRACT

Monkeypox is a rare, sometimes life-threatening zoonotic infection that occurs in west and central Africa. It is caused by Monkeypox virus, an orthopoxvirus similar to Variola virus (the causative agent of smallpox) and Vaccinia virus (the live virus component of orthopoxvirus vaccines) and can spread to humans. After 39 years without detection of human disease in Nigeria, an outbreak involving 118 confirmed cases was identified during 2017-2018 (1); sporadic cases continue to occur. During September 2018-May 2021, six unrelated persons traveling from Nigeria received diagnoses of monkeypox in non-African countries: four in the United Kingdom and one each in Israel and Singapore. In July 2021, a man who traveled from Lagos, Nigeria, to Dallas, Texas, became the seventh traveler to a non-African country with diagnosed monkeypox. Among 194 monitored contacts, 144 (74%) were flight contacts. The patient received tecovirimat, an antiviral for treatment of orthopoxvirus infections, and his home required large-scale decontamination. Whole genome sequencing showed that the virus was consistent with a strain of Monkeypox virus known to circulate in Nigeria, but the specific source of the patient's infection was not identified. No epidemiologically linked cases were reported in Nigeria; no contact received postexposure prophylaxis (PEP) with the orthopoxvirus vaccine ACAM2000.


Subject(s)
Mpox (monkeypox) , Humans , Male , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/prevention & control , Monkeypox virus/genetics , Nigeria/epidemiology , Texas/epidemiology
11.
J Infect Dis ; 225(8): 1367-1376, 2022 04 19.
Article in English | MEDLINE | ID: mdl-32880628

ABSTRACT

BACKGROUND: The largest West African monkeypox outbreak began September 2017, in Nigeria. Four individuals traveling from Nigeria to the United Kingdom (n = 2), Israel (n = 1), and Singapore (n = 1) became the first human monkeypox cases exported from Africa, and a related nosocomial transmission event in the United Kingdom became the first confirmed human-to-human monkeypox transmission event outside of Africa. METHODS: Epidemiological and molecular data for exported and Nigerian cases were analyzed jointly to better understand the exportations in the temporal and geographic context of the outbreak. RESULTS: Isolates from all travelers and a Bayelsa case shared a most recent common ancestor and traveled to Bayelsa, Delta, or Rivers states. Genetic variation for this cluster was lower than would be expected from a random sampling of genomes from this outbreak, but data did not support direct links between travelers. CONCLUSIONS: Monophyly of exportation cases and the Bayelsa sample, along with the intermediate levels of genetic variation, suggest a small pool of related isolates is the likely source for the exported infections. This may be the result of the level of genetic variation present in monkeypox isolates circulating within the contiguous region of Bayelsa, Delta, and Rivers states, or another more restricted, yet unidentified source pool.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Disease Outbreaks , Humans , Mpox (monkeypox)/epidemiology , Monkeypox virus/genetics , Nigeria/epidemiology , United Kingdom
12.
J Infect Dis ; 223(11): 1870-1878, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33728469

ABSTRACT

BACKGROUND: Monkeypox is a poorly described emerging zoonosis endemic to Central and Western Africa. METHODS: Using surveillance data from Tshuapa Province, Democratic Republic of the Congo during 2011-2015, we evaluated differences in incidence, exposures, and clinical presentation of polymerase chain reaction-confirmed cases by sex and age. RESULTS: We report 1057 confirmed cases. The average annual incidence was 14.1 per 100 000 (95% confidence interval, 13.3-15.0). The incidence was higher in male patients (incidence rate ratio comparing males to females, 1.21; 95% confidence interval, 1.07-1.37), except among those 20-29 years old (0.70; .51-.95). Females aged 20-29 years also reported a high frequency of exposures (26.2%) to people with monkeypox-like symptoms.The highest incidence was among 10-19-year-old males, the cohort reporting the highest proportion of animal exposures (37.5%). The incidence was lower among those presumed to have received smallpox vaccination than among those presumed unvaccinated. No differences were observed by age group in lesion count or lesion severity score. CONCLUSIONS: Monkeypox incidence was twice that reported during 1980-1985, an increase possibly linked to declining immunity provided by smallpox vaccination. The high proportion of cases attributed to human exposures suggests changing exposure patterns. Cases were distributed across age and sex, suggesting frequent exposures that follow sociocultural norms.


Subject(s)
Mpox (monkeypox) , Adolescent , Adult , Child , Democratic Republic of the Congo/epidemiology , Female , Humans , Male , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Monkeypox virus/genetics , Smallpox Vaccine , Young Adult
13.
Am J Trop Med Hyg ; 104(2): 604-611, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33289470

ABSTRACT

Recent enhanced monkeypox (MPX) surveillance in the Democratic Republic of Congo, where MPX is endemic, has uncovered multiple cases of MPX and varicella zoster virus (VZV) coinfections. The purpose of this study was to verify if coinfections occur and to characterize the clinical nature of these cases. Clinical, epidemiological, and laboratory results were used to investigate MPX/VZV coinfections. A coinfection was defined as a patient with at least one Orthopoxvirus/MPX-positive sample and at least one VZV-positive sample within the same disease event. Between September 2009 and April 2014, 134 of the 1,107 (12.1%) suspected MPX cases were confirmed as MPX/VZV coinfections. Coinfections were more likely to report symptoms than VZV-alone cases and less likely than MPX-alone cases. Significantly higher lesion counts were observed for coinfection cases than for VZV-alone but less than MPX-alone cases. Discernible differences in symptom and rash severity were detected for coinfection cases compared with those with MPX or VZV alone. Findings indicate infection with both MPX and VZV could modulate infection severity. Collection of multiple lesion samples allows for the opportunity to detect coinfections. As this program continues, it will be important to continue these procedures to assess variations in the proportion of coinfected cases over time.


Subject(s)
Coinfection/epidemiology , Coinfection/virology , Herpes Zoster/epidemiology , Herpesvirus 3, Human/genetics , Monkeypox virus/genetics , Mpox (monkeypox)/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Democratic Republic of the Congo/epidemiology , Epidemiological Monitoring , Female , Herpesvirus 3, Human/isolation & purification , Humans , Infant , Male , Middle Aged , Monkeypox virus/isolation & purification , Young Adult
14.
Genome Biol ; 21(1): 175, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32684155

ABSTRACT

Vaccination has transformed public health, most notably including the eradication of smallpox. Despite its profound historical importance, little is known of the origins and diversity of the viruses used in smallpox vaccination. Prior to the twentieth century, the method, source and origin of smallpox vaccinations remained unstandardised and opaque. We reconstruct and analyse viral vaccine genomes associated with smallpox vaccination from historical artefacts. Significantly, we recover viral molecules through non-destructive sampling of historical materials lacking signs of biological residues. We use the authenticated ancient genomes to reveal the evolutionary relationships of smallpox vaccination viruses within the poxviruses as a whole.


Subject(s)
Genome, Viral , Smallpox Vaccine/history , Vaccinia virus/genetics , American Civil War , Genetic Variation , History, 19th Century , Humans , Metagenome , Vaccination/instrumentation
15.
Emerg Infect Dis ; 26(3): 601-605, 2020 03.
Article in English | MEDLINE | ID: mdl-32091366

ABSTRACT

In March 2015, a patient in Colombia with HIV/AIDS was hospitalized for disseminated ulcers after milking cows that had vesicular lesions on their udders. Vaccinia virus was detected, and the case met criteria for progressive vaccinia acquired by zoonotic transmission. Adherence to an optimized antiretroviral regimen resulted in recovery.


Subject(s)
HIV Infections , Vaccinia virus/isolation & purification , Vaccinia/diagnosis , Acquired Immunodeficiency Syndrome , Adult , Animals , Antiretroviral Therapy, Highly Active , Antiviral Agents/therapeutic use , Colombia , Humans , Male , Vaccinia/drug therapy , Vaccinia/transmission , Zoonoses/virology
16.
Emerg Infect Dis ; 25(12)2019 12.
Article in English | MEDLINE | ID: mdl-31743085

ABSTRACT

In 2014, vaccinia virus (VACV) infections were identified among farmworkers in Caquetá Department, Colombia; additional cases were identified in Cundinamarca Department in 2015. VACV, an orthopoxvirus (OPXV) used in the smallpox vaccine, has caused sporadic bovine and human outbreaks in countries such as Brazil and India. In response to the emergence of this disease in Colombia, we surveyed and collected blood from 134 farmworkers and household members from 56 farms in Cundinamarca Department. We tested serum samples for OPXV antibodies and correlated risk factors with seropositivity by using multivariate analyses. Fifty-two percent of farmworkers had OPXV antibodies; this percentage decreased to 31% when we excluded persons who would have been eligible for smallpox vaccination. The major risk factors for seropositivity were municipality, age, smallpox vaccination scar, duration of time working on a farm, and animals having vaccinia-like lesions. This investigation provides evidence for possible emergence of VACV as a zoonosis in South America.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Vaccinia virus , Vaccinia/epidemiology , Vaccinia/virology , Zoonoses/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Agriculture , Animals , Child , Colombia/epidemiology , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Middle Aged , Orthopoxvirus/immunology , Risk Factors , Seroepidemiologic Studies , Vaccinia virus/immunology , Young Adult
17.
MMWR Morb Mortal Wkly Rep ; 68(42): 943-946, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31647789

ABSTRACT

Vaccinia virus (VACV) is an orthopoxvirus used in smallpox vaccines, as a vector for novel cancer treatments, and for experimental vaccine research (1). The Advisory Committee on Immunization Practices (ACIP) recommends smallpox vaccination for laboratory workers who handle replication-competent VACV (1). For bioterrorism preparedness, the U.S. government stockpiles tecovirimat, the first Food and Drug Administration-approved antiviral for treatment of smallpox (caused by variola virus and globally eradicated in 1980*,†) (2). Tecovirimat has activity against other orthopoxviruses and can be administered under a CDC investigational new drug protocol. CDC was notified about an unvaccinated laboratory worker with a needlestick exposure to VACV, who developed a lesion on her left index finger. CDC and partners performed laboratory confirmation, contacted the study sponsor to identify the VACV strain, and provided oversight for the first case of laboratory-acquired VACV treated with tecovirimat plus intravenous vaccinia immunoglobulin (VIGIV). This investigation highlights 1) the misconception among laboratory workers about the virulence of VACV strains; 2) the importance of providing laboratorians with pathogen information and postexposure procedures; and 3) that although tecovirimat can be used to treat VACV infections, its therapeutic benefit remains unclear.


Subject(s)
Laboratory Personnel , Needlestick Injuries/virology , Occupational Diseases/therapy , Occupational Injuries/virology , Vaccinia/therapy , Adult , California , Female , Humans
18.
J Virol ; 93(24)2019 12 15.
Article in English | MEDLINE | ID: mdl-31554682

ABSTRACT

In 2013, a novel orthopoxvirus was detected in skin lesions of two cattle herders from the Kakheti region of Georgia (country); this virus was named Akhmeta virus. Subsequent investigation of these cases revealed that small mammals in the area had serological evidence of orthopoxvirus infections, suggesting their involvement in the maintenance of these viruses in nature. In October 2015, we began a longitudinal study assessing the natural history of orthopoxviruses in Georgia. As part of this effort, we trapped small mammals near Akhmeta (n = 176) and Gudauri (n = 110). Here, we describe the isolation and molecular characterization of Akhmeta virus from lesion material and pooled heart and lung samples collected from five wood mice (Apodemus uralensis and Apodemus flavicollis) in these two locations. The genomes of Akhmeta virus obtained from rodents group into 2 clades: one clade represented by viruses isolated from A. uralensis samples, and one clade represented by viruses isolated from A. flavicollis samples. These genomes also display several presumptive recombination events for which gene truncation and identity have been examined.IMPORTANCE Akhmeta virus is a unique Orthopoxvirus that was described in 2013 from the country of Georgia. This paper presents the first isolation of this virus from small mammal (Rodentia; Apodemus spp.) samples and the molecular characterization of those isolates. The identification of the virus in small mammals is an essential component to understanding the natural history of this virus and its transmission to human populations and could guide public health interventions in Georgia. Akhmeta virus genomes harbor evidence suggestive of recombination with a variety of other orthopoxviruses; this has implications for the evolution of orthopoxviruses, their ability to infect mammalian hosts, and their ability to adapt to novel host species.


Subject(s)
Murinae/virology , Orthopoxvirus/classification , Orthopoxvirus/isolation & purification , Phylogeny , Poxviridae Infections/virology , Animals , Genes, Viral/genetics , Genome, Viral , Georgia (Republic) , Humans , Longitudinal Studies , Orthopoxvirus/genetics , Poxviridae Infections/transmission , Poxviridae Infections/veterinary , Rodent Diseases/transmission , Rodent Diseases/virology
19.
Viruses ; 11(8)2019 08 01.
Article in English | MEDLINE | ID: mdl-31375015

ABSTRACT

Since the eradication of smallpox, there have been increases in poxvirus infections and the emergence of several novel poxviruses that can infect humans and domestic animals. In 2015, a novel poxvirus was isolated from a resident of Alaska. Diagnostic testing and limited sequence analysis suggested this isolate was a member of the Orthopoxvirus (OPXV) genus but was highly diverged from currently known species, including Akhmeta virus. Here, we present the complete 210,797 bp genome sequence of the Alaska poxvirus isolate, containing 206 predicted open reading frames. Phylogenetic analysis of the conserved central region of the genome suggested the Alaska isolate shares a common ancestor with Old World OPXVs and is diverged from New World OPXVs. We propose this isolate as a member of a new OPXV species, Alaskapox virus (AKPV). The AKPV genome contained host range and virulence genes typical of OPXVs but lacked homologs of C4L and B7R, and the hemagglutinin gene contained a unique 120 amino acid insertion. Seven predicted AKPV proteins were most similar to proteins in non-OPXV Murmansk or NY_014 poxviruses. Genomic analysis revealed evidence suggestive of recombination with Ectromelia virus in two putative regions that contain seven predicted coding sequences, including the A-type inclusion protein.


Subject(s)
Genome, Viral/genetics , Orthopoxvirus/genetics , Alaska , DNA, Viral/genetics , Genetic Variation , Humans , Open Reading Frames , Orthopoxvirus/classification , Phylogeny , Poxviridae Infections/virology , Recombination, Genetic , Sequence Analysis, DNA , Viral Proteins/genetics
20.
Clin Infect Dis ; 69(12): 2205-2207, 2019 11 27.
Article in English | MEDLINE | ID: mdl-30959520

ABSTRACT

Smallpox vaccine is contraindicated in immunosuppression due to increased risk for adverse reactions (eg, progressive vaccinia). We describe the first-ever use of tecovirimat as a preemptive vaccinia virus treatment strategy during induction chemotherapy in an active duty service member who presented with acute leukemia and inadvertent autoinoculation after smallpox vaccination.


Subject(s)
Antiviral Agents/administration & dosage , Benzamides/administration & dosage , Isoindoles/administration & dosage , Leukemia, Myeloid, Acute/diagnosis , Military Personnel , Smallpox Vaccine/adverse effects , Smallpox Vaccine/immunology , Smallpox/prevention & control , Vaccination , Vaccinia virus/drug effects , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Humans , Immunoglobulins, Intravenous/therapeutic use , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/therapy , Male , Premedication , Smallpox Vaccine/administration & dosage , Symptom Assessment , Treatment Outcome , Vaccination/adverse effects , Vaccination/methods , Vaccinia virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...