Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 10: 1095026, 2023.
Article in English | MEDLINE | ID: mdl-36776743

ABSTRACT

Campylobacter jejuni infection poses a serious global threat to public health. The increasing incidence and antibiotic resistance of this bacterial infection have necessitated the adoption of various strategies to curb this trend, primarily through developing new drugs with new mechanisms of action. The enzyme malate:quinone oxidoreductase (MQO) has been shown to be essential for the survival of several bacteria and parasites. MQO is a peripheral membrane protein that catalyses the oxidation of malate to oxaloacetate, a crucial step in the tricarboxylic acid cycle. In addition, MQO is involved in the reduction of the quinone pool in the electron transport chain and thus contributes to cellular bioenergetics. The enzyme is an attractive drug target as it is not conserved in mammals. As a preliminary step in assessing the potential application of MQO from C. jejuni (CjMQO) as a new drug target, we purified active recombinant CjMQO and conducted, for the first time, biochemical analyses of MQO from a pathogenic bacterium. Our study showed that ferulenol, a submicromolar mitochondrial MQO inhibitor, and embelin are nanomolar inhibitors of CjMQO. We showed that both inhibitors are mixed-type inhibitors versus malate and noncompetitive versus quinone, suggesting the existence of a third binding site to accommodate these inhibitors; indeed, such a trait appears to be conserved between mitochondrial and bacterial MQOs. Interestingly, ferulenol and embelin also inhibit the in vitro growth of C. jejuni, supporting the hypothesis that MQO is essential for C. jejuni survival and is therefore an important drug target.

2.
Article in English | MEDLINE | ID: mdl-31192166

ABSTRACT

Campylobacter jejuni outer membrane vesicles (OMVs) contain numerous virulence-associated proteins including the cytolethal distending toxin and three serine proteases. As C. jejuni lacks the classical virulence-associated secretion systems of other enteric pathogens that deliver effectors directly into target cells, OMVs may have a particularly important role in virulence. C. jejuni OMV production is stimulated by the presence of physiological concentrations of the bile salt sodium taurocholate (ST) through an unknown mechanism. The maintenance of lipid asymmetry (MLA) pathway has been implicated in a novel mechanism for OMV biogenesis, open to regulation by host signals. In this study we investigated the role of the MLA pathway in C. jejuni OMV biogenesis with ST as a potential regulator. OMV production was quantified by analyzing protein and lipid concentrations of OMV preparations and OMV particle counts produced by nanoparticle tracking analysis. Mutation of mlaA which encodes the outer membrane component of the MLA pathway significantly increased OMV production compared to the wild-type strain. Detergent sensitivity and membrane permeability assays confirmed the increased OMV production was not due to changes in membrane stability. The presence of 0.2% (w/v) ST increased wild-type OMV production and reduced OMV size, but did not further stimulate mlaA mutant OMV production or significantly alter mlaA mutant OMV size. qRT-PCR analysis demonstrated that the presence of ST decreased expression of both mlaA and mlaC in C. jejuni wild-type strains 11168 and 488. Collectively the data in this study suggests C. jejuni can regulate OMV production in response to host gut signals through changes in expression of the MLA pathway. As the gut bile composition is dependent on both diet and the microbiota, this study highlights the potential importance of diet and lifestyle factors on the varying disease presentations associated with gut pathogen infection.


Subject(s)
Bacterial Outer Membrane Proteins/drug effects , Campylobacter jejuni/drug effects , Campylobacter jejuni/metabolism , Lipid Metabolism , Taurocholic Acid/pharmacology , Transport Vesicles/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins , Bile Acids and Salts , Campylobacter jejuni/genetics , Cell Membrane Permeability/drug effects , Down-Regulation , Mutation , Serine Proteases/metabolism , Virulence
3.
Front Microbiol ; 10: 2864, 2019.
Article in English | MEDLINE | ID: mdl-31921044

ABSTRACT

The role of the Type VI secretion system (T6SS) in Campylobacter jejuni is poorly understood despite an increasing prevalence of the T6SS in recent C. jejuni isolates in humans and chickens. The T6SS is a contractile secretion machinery capable of delivering effectors that can play a role in host colonization and niche establishment. During host colonization, C. jejuni is exposed to oxidative stress in the host gastrointestinal tract, and in other bacteria the T6SS has been linked with the oxidative stress response. In this study, comparisons of whole genome sequences of a novel human isolate 488 with previously sequenced strains revealed a single highly conserved T6SS cluster shared between strains isolated from humans and chickens. The presence of a functional T6SS in the 488 wild-type strain is indicated by expression of T6SS genes and secretion of the effector TssD. Increased expression of oxidative stress response genes katA, sodB, and ahpC, and increased oxidative stress resistance in 488 wild-type strain suggest T6SS is associated with oxidative stress response. The role of the T6SS in interactions with host cells is explored using in vitro and in vivo models, and the presence of the T6SS is shown to increase C. jejuni cytotoxicity in the Galleria mellonella infection model. In biologically relevant models, the T6SS enhances C. jejuni interactions with and invasion of chicken primary intestinal cells and enhances the ability of C. jejuni to colonize chickens. This study demonstrates that the C. jejuni T6SS provides defense against oxidative stress and enhances host colonization, and highlights the importance of the T6SS during in vivo survival of T6SS-positive C. jejuni strains.

4.
Sci Rep ; 8(1): 8390, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29849063

ABSTRACT

Vibrio cholerae O1 El Tor is an aquatic Gram-negative bacterium responsible for the current seventh pandemic of the diarrheal disease, cholera. A previous whole-genome analysis on V. cholerae O1 El Tor strains from the 2010 epidemic in Pakistan showed that all strains contained the V. cholerae pathogenicity island-1 and the accessory colonisation gene acfC (VC_0841). Here we show that acfC possess an open reading frame of 770 bp encoding a protein with a predicted size of 28 kDa, which shares high amino acid similarity with two adhesion proteins found in other enteropathogens, including Paa in serotype O45 porcine enteropathogenic Escherichia coli and PEB3 in Campylobacter jejuni. Using a defined acfC deletion mutant, we studied the specific role of AcfC in V. cholerae O1 El Tor environmental survival, colonisation and virulence in two infection model systems (Galleria mellonella and infant rabbits). Our results indicate that AcfC might be a periplasmic sulfate-binding protein that affects chemotaxis towards mucin and bacterial infectivity in the infant rabbit model of cholera. Overall, our findings suggest that AcfC contributes to the chemotactic response of WT V. cholerae and plays an important role in defining the overall distribution of the organism within the intestine.


Subject(s)
Bacterial Proteins/metabolism , Chemotaxis , Vibrio cholerae O1/metabolism , Vibrio cholerae O1/pathogenicity , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biofilms/growth & development , Cell Adhesion , HT29 Cells , Humans , Intestine, Small/microbiology , Mutation , Periplasm/metabolism , Protein Transport , Rabbits , Sulfates/metabolism , Vibrio cholerae O1/cytology , Vibrio cholerae O1/genetics , Virulence
5.
NPJ Microgravity ; 3: 23, 2017.
Article in English | MEDLINE | ID: mdl-28894789

ABSTRACT

Microgravity induces physiological deconditioning due to the absence of gravity loading, resulting in bone mineral density loss, atrophy of lower limb skeletal and postural muscles, and lengthening of the spine. SkinSuit is a lightweight compression suit designed to provide head-to-foot (axial) loading to counteract spinal elongation during spaceflight. As synthetic garments may impact negatively on the skin microbiome, we used 16S ribosomal RNA (rRNA) gene amplicon procedures to define bacterial skin communities at sebaceous and moist body sites of five healthy male volunteers undergoing SkinSuit evaluation. Each volunteer displayed a diverse, distinct bacterial population at each skin site. Short (8 h) periods of dry hyper-buoyancy flotation wearing either gym kit or SkinSuit elicited changes in the composition of the skin microbiota at the genus level but had little or no impact on community structure at the phylum level or the richness and diversity of the bacterial population. We also determined the composition of the skin microbiota of an astronaut during pre-flight training, during an 8-day visit to the International Space Station involving two 6-7 h periods of SkinSuit wear, and for 1 month after return. Changes in composition of bacterial skin communities at five body sites were strongly linked to changes in geographical location. A distinct ISS bacterial microbiota signature was found which reversed to a pre-flight profile on return. No changes in microbiome complexity or diversity were noted, with little evidence for colonisation by potentially pathogenic bacteria; we conclude that short periods of SkinSuit wear induce changes to the composition of the skin microbiota but these are unlikely to compromise the healthy skin microbiome.

SELECTION OF CITATIONS
SEARCH DETAIL
...