Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 13(1): 4398, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906236

ABSTRACT

Fetal growth restriction (FGR) affects 5-10% of pregnancies, and can have serious consequences for both mother and child. Prevention and treatment are limited because FGR pathogenesis is poorly understood. Genetic studies implicate KIR and HLA genes in FGR, however, linkage disequilibrium, genetic influence from both parents, and challenges with investigating human pregnancies make the risk alleles and their functional effects difficult to map. Here, we demonstrate that the interaction between the maternal KIR2DL1, expressed on uterine natural killer (NK) cells, and the paternally inherited HLA-C*0501, expressed on fetal trophoblast cells, leads to FGR in a humanized mouse model. We show that the KIR2DL1 and C*0501 interaction leads to pathogenic uterine arterial remodeling and modulation of uterine NK cell function. This initial effect cascades to altered transcriptional expression and intercellular communication at the maternal-fetal interface. These findings provide mechanistic insight into specific FGR risk alleles, and provide avenues of prevention and treatment.


Subject(s)
Fetal Growth Retardation , Trophoblasts , Animals , Cell Communication/genetics , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Fetus/metabolism , HLA-C Antigens/genetics , HLA-C Antigens/metabolism , Mice , Pregnancy , Trophoblasts/metabolism
2.
Commun Biol ; 4(1): 1186, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650224

ABSTRACT

The adoptive transfer of regulatory T-cells (Tregs) is a promising therapeutic approach in transplantation and autoimmunity. However, because large cell numbers are needed to achieve a therapeutic effect, in vitro expansion is required. By comparing their function, phenotype and transcriptomic profile against ex vivo Tregs, we demonstrate that expanded human Tregs switch their metabolism to aerobic glycolysis and show enhanced suppressive function through hypoxia-inducible factor 1-alpha (HIF1A) driven acquisition of CD73 expression. In conjunction with CD39, CD73 expression enables expanded Tregs to convert ATP to immunosuppressive adenosine. We conclude that for maximum therapeutic benefit, Treg expansion protocols should be optimised for CD39/CD73 co-expression.


Subject(s)
5'-Nucleotidase/genetics , Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , T-Lymphocytes, Regulatory/metabolism , 5'-Nucleotidase/metabolism , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male
3.
PLoS One ; 11(7): e0158327, 2016.
Article in English | MEDLINE | ID: mdl-27438997

ABSTRACT

Multiple sclerosis is an autoimmune disease of the central nervous system. Genome wide association studies have identified over 100 common variants associated with multiple sclerosis, the majority of which implicate immunologically relevant genes, particularly those involved in T-cell development. SNP rs13204742 at the THEMIS/PTPRK locus is one such variant. Here, we have demonstrated mutually exclusive use of exon 1 and 2 amongst 16 novel THEMIS isoforms. We also show inverse correlation between THEMIS expression in human CD4+ T-cells and dosage of the multiple sclerosis risk allele at rs13204742, driven by reduced expression of exon 1- containing isoforms. In silico analysis suggests that this may be due to cell-specific, allele-dependent binding of the transcription factors FoxP3 and/or E47. Research exploring the functional implications of GWAS variants is important for gaining an understanding of disease pathogenesis, with the ultimate aim of identifying new therapeutic targets.


Subject(s)
Genetic Predisposition to Disease , Intracellular Signaling Peptides and Proteins/genetics , Multiple Sclerosis/genetics , Quantitative Trait Loci/genetics , Adult , Alleles , CD4-Positive T-Lymphocytes/metabolism , Exons/genetics , Female , Gene Expression Regulation , Genome-Wide Association Study , Genotype , Humans , Intracellular Signaling Peptides and Proteins/biosynthesis , Male , Middle Aged , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Polymorphism, Single Nucleotide , Protein Isoforms/biosynthesis , Protein Isoforms/genetics
5.
Proc Natl Acad Sci U S A ; 110(50): 20200-5, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24282306

ABSTRACT

The association between lymphopenia and autoimmunity is recognized, but the underlying mechanisms are poorly understood and have not been studied systematically in humans. People with multiple sclerosis treated with the lymphocyte-depleting monoclonal antibody alemtuzumab offer a unique opportunity to study this phenomenon; one in three people develops clinical autoimmunity, and one in three people develops asymptomatic autoantibodies after treatment. Here, we show that T-cell recovery after alemtuzumab is driven by homeostatic proliferation, leading to the generation of chronically activated (CD28(-)CD57(+)), highly proliferative (Ki67(+)), oligoclonal, memory-like CD4 and CD8 T cells (CCR7(-)CD45RA(-) or CCR7(-)CD45RA(+)) capable of producing proinflammatory cytokines. Individuals who develop autoimmunity after treatment are no more lymphopenic than their nonautoimmune counterparts, but they show reduced thymopoiesis and generate a more restricted T-cell repertoire. Taken together, these findings demonstrate that homeostatic proliferation drives lymphopenia-associated autoimmunity in humans.


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , Autoimmunity/immunology , Homeostasis/immunology , Lymphocyte Depletion/adverse effects , Multiple Sclerosis/drug therapy , T-Lymphocytes/immunology , Alemtuzumab , Base Sequence , Cell Proliferation , Cytokines/immunology , England , Genes, T-Cell Receptor beta/genetics , Humans , Immunophenotyping , Linear Models , Molecular Sequence Data , Multiple Sclerosis/immunology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL