Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Virus Res ; 345: 199398, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754786

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne nairovirus with a wide geographic spread that can cause severe and lethal disease. No specific medical countermeasures are approved to combat this illness. The CCHFV L protein contains an ovarian tumor (OTU) domain with a cysteine protease thought to modulate cellular immune responses by removing ubiquitin and ISG15 post-translational modifications from host and viral proteins. Viral deubiquitinases like CCHFV OTU are attractive drug targets, as blocking their activity may enhance cellular immune responses to infection, and potentially inhibit viral replication itself. We previously demonstrated that the engineered ubiquitin variant CC4 is a potent inhibitor of CCHFV replication in vitro. A major challenge of the therapeutic use of small protein inhibitors such as CC4 is their requirement for intracellular delivery, e.g., by viral vectors. In this study, we examined the feasibility of in vivo CC4 delivery by a replication-deficient recombinant adenovirus (Ad-CC4) in a lethal CCHFV mouse model. Since the liver is a primary target of CCHFV infection, we aimed to optimize delivery to this organ by comparing intravenous (tail vein) and intraperitoneal injection of Ad-CC4. While tail vein injection is a traditional route for adenovirus delivery, in our hands intraperitoneal injection resulted in higher and more widespread levels of adenovirus genome in tissues, including, as intended, the liver. However, despite promising in vitro results, neither route of in vivo CC4 treatment resulted in protection from a lethal CCHFV infection.


Subject(s)
Adenoviridae , Disease Models, Animal , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Virus Replication , Animals , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever, Crimean/virology , Mice , Adenoviridae/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Genetic Vectors/genetics , Antiviral Agents/pharmacology , Female , Liver/virology , Humans
2.
ACS Sustain Chem Eng ; 12(8): 3044-3060, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38425834

ABSTRACT

The heterostructure WO3/BiVO4-based photoanodes have garnered significant interest for photoelectrochemical (PEC) solar-driven water splitting to produce hydrogen. However, challenges such as inadequate charge separation and photocorrosion significantly hinder their performance, limiting overall solar-to-hydrogen conversion efficiency. The incorporation of cocatalysts has shown promise in improving charge separation at the photoanode, yet mitigating photocorrosion remains a formidable challenge. Amorphous metal oxide-based passivation layers offer a potential solution to safeguard semiconductor catalysts. We examine the structural, surface morphological, and optical properties of two-step-integrated sputter and spray-coated TiO2 thin films and their integration onto WO3/BiVO4, both with and without NiOOH cocatalyst deposition. The J-V experiments reveal that the NiOOH cocatalyst enhances the photocurrent density of the WO3/BiVO4 photoanode in water splitting reactions from 2.81 to 3.87 mA/cm2. However, during prolonged operation, the photocurrent density degrades by 52%. In contrast, integrated sputter and spray-coated TiO2 passivation layer-coated WO3/BiVO4/NiOOH samples demonstrate a ∼88% enhancement in photocurrent density (5.3 mA/cm2) with minimal degradation, emphasizing the importance of a strategic coating protocol to sustain photocurrent generation. We further explore the feasibility of using natural mine wastewater as an electrolyte feedstock in PEC generation. Two-compartment PEC cells, utilizing both fresh water and metal mine wastewater feedstocks exhibit 66.6 and 74.2 µmol/h cm2 hydrogen generation, respectively. Intriguingly, the recovery of zinc (Zn2+) heavy metals on the cathode surface in the mine wastewater electrolyte is confirmed through surface morphology and elemental analysis. This work underscores the significance of passivation layer and cocatalyst coating methodologies in a sequential order to enhance charge separation and protect the photoanode from photocorrosion, contributing to sustainable hydrogen generation. Additionally, it suggests the potential of utilizing wastewater in electrolyzers as an alternative to freshwater resources.

4.
J Infect Dis ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064677

ABSTRACT

Nipah virus (NiV) is a highly pathogenic paramyxovirus. The Syrian hamster model recapitulates key features of human NiV disease and is a critical tool for evaluating antivirals and vaccines. Here we describe longitudinal humoral immune responses in NiV-infected Syrian hamsters. Samples were obtained 1-28 days after infection and analyzed by ELISA, neutralization, and Fc-mediated effector function assays. NiV infection elicited robust antibody responses against the nucleoprotein and attachment glycoprotein. Levels of neutralizing antibodies were modest and only detectable in surviving animals. Fc-mediated effector functions were mostly observed in nucleoprotein-targeting antibodies. Antibody levels and activities positively correlated with challenge dose.

5.
Ind Eng Chem Res ; 62(45): 19084-19094, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38020790

ABSTRACT

For the first time, we demonstrate a photoelectrocatalysis technique for simultaneous surfactant pollutant degradation and green hydrogen generation using mesoporous WO3/BiVO4 photoanode under simulated sunlight irradiation. The materials properties such as morphology, crystallite structure, chemical environment, optical absorbance, and bandgap energy of the WO3/BiVO4 films are examined and discussed. We have tested the anionic type (sodium 2-naphthalenesulfonate (S2NS)) and cationic type surfactants (benzyl alkyl dimethylammonium compounds (BAC-C12)) as model pollutants. A complete removal of S2NS and BAC-C12 surfactants at 60 and 90 min, respectively, by applying 1.75 V applied potential vs RHE to the circuit, under 1 sun was achieved. An interesting competitive phenomenon for photohole utilization was observed between surfactants and adsorbed water. This led to the formation of H2O2 from water alongside surfactant degradation (anode) and hydrogen evolution (cathode). No byproducts were observed after the direct photohole mediated degradation of surfactants, implying its advantage over other AOPs and biological processes. In the cathode compartment, 82.51 µmol/cm2 and 71.81 µmol/cm2 of hydrogen gas were generated during the BAC-C12 and S2NS surfactant degradation process, respectively, at 1.75 V RHE applied potential.

6.
Sci Rep ; 13(1): 19384, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938597

ABSTRACT

Reverse-transcription quantitative polymerase chain reaction assays are frequently used to evaluate gene expression in animal model studies. Data analyses depend on normalization using a suitable reference gene (RG) to minimize effects of variation due to sample collection, sample processing, or experimental set-up. Here, we investigated the suitability of nine potential RGs in laboratory animals commonly used to study viral hemorrhagic fever infection. Using tissues (liver, spleen, gonad [ovary or testis], kidney, heart, lung, eye, brain, and blood) collected from naïve animals and those infected with Crimean-Congo hemorrhagic fever (mice), Nipah (hamsters), or Lassa (guinea pigs) viruses, optimal species-specific RGs were identified based on five web-based algorithms to assess RG stability. Notably, the Ppia RG demonstrated stability across all rodent tissues tested. Optimal RG pairs that include Ppia were determined for each rodent species (Ppia and Gusb for mice; Ppia and Hrpt for hamsters; and Ppia and Gapdh for guinea pigs). These RG pair assays were multiplexed with viral targets to improve assay turnaround time and economize sample usage. Finally, a pan-rodent Ppia assay capable of detecting Ppia across multiple rodent species was developed and successfully used in ecological investigations of field-caught rodents, further supporting its pan-species utility.


Subject(s)
Arenaviruses, New World , Dengue Virus , Hemorrhagic Fever Virus, Crimean-Congo , Cricetinae , Female , Male , Guinea Pigs , Animals , Mice , Models, Animal , Cyclophilin A , RNA
7.
Nat Commun ; 14(1): 6804, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884510

ABSTRACT

The necroptosis pathway is a lytic, pro-inflammatory mode of cell death that is widely implicated in human disease, including renal, pulmonary, gut and skin inflammatory pathologies. The precise mechanism of the terminal steps in the pathway, where the RIPK3 kinase phosphorylates and triggers a conformation change and oligomerization of the terminal pathway effector, MLKL, are only emerging. Here, we structurally identify RIPK3-mediated phosphorylation of the human MLKL activation loop as a cue for MLKL pseudokinase domain dimerization. MLKL pseudokinase domain dimerization subsequently drives formation of elongated homotetramers. Negative stain electron microscopy and modelling support nucleation of the MLKL tetramer assembly by a central coiled coil formed by the extended, ~80 Å brace helix that connects the pseudokinase and executioner four-helix bundle domains. Mutational data assert MLKL tetramerization as an essential prerequisite step to enable the release and reorganization of four-helix bundle domains for membrane permeabilization and cell death.


Subject(s)
Protein Kinases , Receptor-Interacting Protein Serine-Threonine Kinases , Humans , Phosphorylation , Necrosis , Protein Kinases/metabolism , Dimerization , Cell Death , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Apoptosis
8.
Sci Adv ; 9(31): eadh4057, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37540755

ABSTRACT

Nipah virus (NiV) causes a highly lethal disease in humans who present with acute respiratory or neurological signs. No vaccines against NiV have been approved to date. Here, we report on the clinical impact of a novel NiV-derived nonspreading replicon particle lacking the fusion (F) protein gene (NiVΔF) as a vaccine in three small animal models of disease. A broad antibody response was detected that included immunoglobulin G (IgG) and IgA subtypes with demonstrable Fc-mediated effector function targeting multiple viral antigens. Single-dose intranasal vaccination up to 3 days before challenge prevented clinical signs and reduced virus levels in hamsters and immunocompromised mice; decreases were seen in tissues and mucosal secretions, critically decreasing potential for virus transmission. This virus replicon particle system provides a vital tool to the field and demonstrates utility as a highly efficacious and safe vaccine candidate that can be administered parenterally or mucosally to protect against lethal Nipah disease.


Subject(s)
Henipavirus Infections , Nipah Virus , Viral Vaccines , Cricetinae , Humans , Animals , Mice , Henipavirus Infections/prevention & control , Henipavirus Infections/genetics , Vaccination , Disease Models, Animal , Nipah Virus/genetics , Replicon
9.
J Infect Dis ; 228(Suppl 7): S536-S547, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37145895

ABSTRACT

Ebola virus (EBOV) causes lethal disease in humans but not in mice. Here, we generated recombinant mouse-adapted (MA) EBOVs, including 1 based on the previously reported serially adapted strain (rMA-EBOV), along with single-reporter rMA-EBOVs expressing either fluorescent (ZsGreen1 [ZsG]) or bioluminescent (nano-luciferase [nLuc]) reporters, and dual-reporter rMA-EBOVs expressing both ZsG and nLuc. No detriment to viral growth in vitro was seen with inclusion of MA-associated mutations or reporter proteins. In CD-1 mice, infection with MA-EBOV, rMA-EBOV, and single-reporter rMA-EBOVs conferred 100% lethality; infection with dual-reporter rMA-EBOV resulted in 73% lethality. Bioluminescent signal from rMA-EBOV expressing nLuc was detected in vivo and ex vivo using the IVIS Spectrum CT. Fluorescent signal from rMA-EBOV expressing ZsG was detected in situ using handheld blue-light transillumination and ex vivo through epi-illumination with the IVIS Spectrum CT. These data support the use of reporter MA-EBOV for studies of Ebola virus in animal disease models.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Animals , Mice , Ebolavirus/genetics , Virulence , Mutation
10.
Biochem J ; 480(9): 665-684, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37115711

ABSTRACT

Necroptosis is a mode of programmed, lytic cell death that is executed by the mixed lineage kinase domain-like (MLKL) pseudokinase following activation by the upstream kinases, receptor-interacting serine/threonine protein kinase (RIPK)-1 and RIPK3. Dysregulated necroptosis has been implicated in the pathophysiology of many human diseases, including inflammatory and degenerative conditions, infectious diseases and cancers, provoking interest in pharmacological targeting of the pathway. To identify small molecules impacting on the necroptotic machinery, we performed a phenotypic screen using a mouse cell line expressing an MLKL mutant that kills cells in the absence of upstream death or pathogen detector receptor activation. This screen identified the vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR) tyrosine kinase inhibitor, ABT-869 (Linifanib), as a small molecule inhibitor of necroptosis. We applied a suite of cellular, biochemical and biophysical analyses to pinpoint the apical necroptotic kinase, RIPK1, as the target of ABT-869 inhibition. Our study adds to the repertoire of established protein kinase inhibitors that additionally target RIPK1 and raises the prospect that serendipitous targeting of necroptosis signalling may contribute to their clinical efficacy in some settings.


Subject(s)
Protein Kinases , Humans , Protein Kinases/genetics , Protein Kinases/metabolism , Necroptosis , Vascular Endothelial Growth Factor A/metabolism , Apoptosis , Receptors, Vascular Endothelial Growth Factor/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
11.
J Med Chem ; 66(4): 2361-2385, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36781172

ABSTRACT

Necroptosis is a regulated caspase-independent form of necrotic cell death that results in an inflammatory phenotype. This process contributes profoundly to the pathophysiology of numerous neurodegenerative, cardiovascular, infectious, malignant, and inflammatory diseases. Receptor-interacting protein kinase 1 (RIPK1), RIPK3, and the mixed lineage kinase domain-like protein (MLKL) pseudokinase have been identified as the key components of necroptosis signaling and are the most promising targets for therapeutic intervention. Here, we review recent developments in the field of small-molecule inhibitors of necroptosis signaling, provide guidelines for their use as chemical probes to study necroptosis, and assess the therapeutic challenges and opportunities of such inhibitors in the treatment of a range of clinical indications.


Subject(s)
Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Humans , Necrosis , Apoptosis
12.
Antiviral Res ; 210: 105496, 2023 02.
Article in English | MEDLINE | ID: mdl-36567020

ABSTRACT

Development of lethal models of Ebola virus disease has been achieved by the serial passage of virus isolates from human cases in mice and guinea pigs. Use of mice infected with non-adapted virus has been limited due to the absence of overt clinical disease. In recent years, newly recognized sequelae identified in human cases has highlighted the importance of continued investigations of non-lethal infection both in humans and animal models. Here, we revisit the use of rodent-adapted and non-adapted Ebola virus (EBOV) in mice to investigate infection tolerance and future utility of these models in pathogenesis and therapeutic intervention studies. We found that like non-adapted wild-type EBOV, guinea pig-adapted EBOV resulted in widespread tissue infection, variably associated with tissue pathology, and alterations in clinical and immunological analytes in the absence of overt disease. Notably, infection with either non-lethal variant did not greatly differ from lethal mouse-adapted EBOV until near the time end-point criteria are reached in these mice. These data support future investigations of pathogenesis, convalescence, and sequelae in mouse models of virus tolerance.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Guinea Pigs , Humans , Animals , Mice , Ebolavirus/genetics , Disease Models, Animal
13.
Environ Microbiol ; 24(10): 4561-4569, 2022 10.
Article in English | MEDLINE | ID: mdl-35837859

ABSTRACT

An imported case of monkeypox was diagnosed in December 2019 in a traveller returning from Nigeria to the UK. Subsequently, environmental sampling was performed at two adjoining single-room residences occupied by the patient and their sibling. Monkeypox virus DNA was identified in multiple locations throughout both properties, and monkeypox virus was isolated from several samples 3 days after the patient was last in these locations. Positive samples were identified following the use of both vacuum and surface sampling techniques; these methodologies allowed for environmental analysis of potentially contaminated porous and non-porous surfaces via real-time quantitative reverse transcriptase PCR analysis in addition to viral isolation to confirm the presence of infection-competent virus. This report confirms the potential for infection-competent monkeypox virus to be recovered in environmental settings associated with known positive cases and the necessity for rapid environmental assessment to reduce potential exposure to close contacts and the general public. The methods adopted in this investigation may be used for future confirmed cases of monkeypox in order to establish levels of contamination, confirm the presence of infection-competent material and to identify locations requiring additional cleaning.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , DNA, Viral , Disease Outbreaks , Humans , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Monkeypox virus/genetics , United Kingdom
14.
Cell Death Differ ; 29(9): 1804-1815, 2022 09.
Article in English | MEDLINE | ID: mdl-35264780

ABSTRACT

Necroptosis is a lytic programmed cell death pathway with origins in innate immunity that is frequently dysregulated in inflammatory diseases. The terminal effector of the pathway, MLKL, is licensed to kill following phosphorylation of its pseudokinase domain by the upstream regulator, RIPK3 kinase. Phosphorylation provokes the unleashing of MLKL's N-terminal four-helix bundle (4HB or HeLo) domain, which binds and permeabilizes the plasma membrane to cause cell death. The precise mechanism by which the 4HB domain permeabilizes membranes, and how the mechanism differs between species, remains unclear. Here, we identify the membrane binding epitope of mouse MLKL using NMR spectroscopy. Using liposome permeabilization and cell death assays, we validate K69 in the α3 helix, W108 in the α4 helix, and R137/Q138 in the first brace helix as crucial residues for necroptotic signaling. This epitope differs from the phospholipid binding site reported for human MLKL, which comprises basic residues primarily located in the α1 and α2 helices. In further contrast to human and plant MLKL orthologs, in which the α3-α4 loop forms a helix, this loop is unstructured in mouse MLKL in solution. Together, these findings illustrate the versatility of the 4HB domain fold, whose lytic function can be mediated by distinct epitopes in different orthologs.


Subject(s)
Necroptosis , Protein Kinases , Animals , Epitopes , Humans , Mice , Necrosis , Phosphorylation , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
15.
Sci Rep ; 11(1): 23379, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34862448

ABSTRACT

A pathogen inactivation step during collection or processing of clinical samples has the potential to reduce infectious risks associated with diagnostic procedures. It is essential that these inactivation methods are demonstrated to be effective, particularly for non-traditional inactivation reagents or for commercial products where the chemical composition is undisclosed. This study assessed inactivation effectiveness of twenty-four next-generation (guanidine-free) nucleic acid extraction lysis buffers and twelve rapid antigen test buffers against SARS-CoV-2, the causative agent of COVID-19. These data have significant safety implications for SARS-CoV-2 diagnostic testing and support the design and evidence-based risk assessment of these procedures.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Serological Testing/methods , SARS-CoV-2/drug effects , Acetamides , Buffers , COVID-19/diagnosis , COVID-19/virology , Fluoroacetates , Guanidine/adverse effects , Humans , Virus Inactivation/drug effects
16.
Nat Commun ; 12(1): 6783, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34811356

ABSTRACT

The ancestral origins of the lytic cell death mode, necroptosis, lie in host defense. However, the dysregulation of necroptosis in inflammatory diseases has led to widespread interest in targeting the pathway therapeutically. This mode of cell death is executed by the terminal effector, the MLKL pseudokinase, which is licensed to kill following phosphorylation by its upstream regulator, RIPK3 kinase. The precise molecular details underlying MLKL activation are still emerging and, intriguingly, appear to mechanistically-diverge between species. Here, we report the structure of the human RIPK3 kinase domain alone and in complex with the MLKL pseudokinase. These structures reveal how human RIPK3 structurally differs from its mouse counterpart, and how human RIPK3 maintains MLKL in an inactive conformation prior to induction of necroptosis. Residues within the RIPK3:MLKL C-lobe interface are crucial to complex assembly and necroptotic signaling in human cells, thereby rationalizing the strict species specificity governing RIPK3 activation of MLKL.


Subject(s)
Cell Death/physiology , Necroptosis/physiology , Protein Kinases/chemistry , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Cell Death/genetics , HT29 Cells , Humans , Mice , Necroptosis/genetics , Phosphorylation , Protein Conformation , Protein Interaction Domains and Motifs , Protein Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Recombinant Proteins , Signal Transduction
17.
Anal Chem ; 93(32): 11108-11115, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34348022

ABSTRACT

Studies of the metal content of metalloproteins in tissues from the human central nervous system (CNS) can be compromised by preparative techniques which alter levels of, or interactions between, metals and the protein of interest within a complex mixture. We developed a methodological workflow combining size exclusion chromatography, native isoelectric focusing, and either proton or synchrotron X-ray fluorescence within electrophoresis gels to analyze the endogenous metal content of copper-zinc superoxide dismutase (SOD1) purified from minimal amounts (<20 mg) of post-mortem human brain and spinal cord tissue. Abnormal metallation and aggregation of SOD1 are suspected to play a role in amyotrophic lateral sclerosis and Parkinson's disease, but data describing SOD1 metal occupancy in human tissues have not previously been reported. Validating our novel approach, we demonstrated step-by-step metal preservation, preserved SOD1 activity, and substantial enrichment of SOD1 protein versus confounding metalloproteins. We analyzed tissues from nine healthy individuals and five CNS regions (occipital cortex, substantia nigra, locus coeruleus, dorsal spinal cord, and ventral spinal cord). We found that Cu and Zn were bound to SOD1 in a ratio of 1.12 ± 0.28, a ratio very close to the expected value of 1. Our methodological workflow can be applied to the study of endogenous native SOD1 in a pathological context and adapted to a range of metalloproteins from human tissues and other sources.


Subject(s)
Amyotrophic Lateral Sclerosis , Zinc , Central Nervous System , Copper , Humans , Mutation , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , Workflow
18.
J Gen Virol ; 102(4)2021 04.
Article in English | MEDLINE | ID: mdl-33913803

ABSTRACT

Infectious SARS-CoV-2 can be recovered from the oral cavities and saliva of COVID-19 patients with potential implications for disease transmission. Reducing viral load in patient saliva using antiviral mouthwashes may therefore have a role as a control measure in limiting virus spread, particularly in dental settings. Here, the efficacy of SARS-CoV-2 inactivation by seven commercially available mouthwashes with a range of active ingredients were evaluated in vitro. We demonstrate ≥4.1 to ≥5.5 log10 reduction in SARS-CoV-2 titre following a 1 min treatment with commercially available mouthwashes containing 0.01-0.02 % stabilised hypochlorous acid or 0.58 % povidone iodine, and non-specialist mouthwashes with both alcohol-based and alcohol-free formulations designed for home use. In contrast, products containing 1.5 % hydrogen peroxide or 0.2 % chlorhexidine gluconate were ineffective against SARS-CoV-2 in these tests. This study contributes to the growing body of evidence surrounding virucidal efficacy of mouthwashes/oral rinses against SARS-CoV-2, and has important applications in reducing risk associated with aerosol generating procedures in dentistry and potentially for infection control more widely.


Subject(s)
Antiviral Agents/pharmacology , Mouthwashes/pharmacology , SARS-CoV-2/drug effects , Virus Inactivation/drug effects , COVID-19/prevention & control , COVID-19/transmission , Cell Survival/drug effects , Humans , Mouth/virology , Viral Load/drug effects
19.
Clin Psychol Rev ; 85: 101984, 2021 04.
Article in English | MEDLINE | ID: mdl-33607568

ABSTRACT

The study of temperament in Autism Spectrum Disorder (ASD) has the potential to provide insight regarding variability in the onset, nature, and course of both core and co-morbid symptoms. The aim of this systematic review was to integrate existing findings concerning temperament in the context of ASD. Searches of Medline, PsychInfo and Scopus databases identified 64 relevant studies. As a group, children and adolescents with ASD appear to be temperamentally different from both typically developing and other clinical non-ASD groups, characterized by higher negative affectivity, lower surgency, and lower effortful control at a higher-order level. Consistent with research on typically developing children, correlational findings and emerging longitudinal evidence suggests that lower effortful control and higher negative affect are associated with increased internalizing and externalizing problems in ASD samples. Longitudinal studies suggest there may be temperamental differences between high familial risk infants who do and do not develop ASD from as early as 6-months of age. Limitations of existing research are highlighted, and possible directions for future research to capitalize on the potential afforded through the study of temperament in relation to ASD are discussed.


Subject(s)
Autism Spectrum Disorder , Problem Behavior , Adolescent , Child , Humans , Infant , Temperament
20.
J Orthod ; 48(2): 110-117, 2021 06.
Article in English | MEDLINE | ID: mdl-33573439

ABSTRACT

OBJECTIVE: To explore and understand young people's perspectives of fixed orthodontic treatment. In particular, understanding how young people perceived and experienced having a fixed appliance and how their experiences can change during their treatment. DESIGN: Qualitative study carried out longitudinally. SETTING: In-depth qualitative interviews carried out in participants' homes, video diaries recorded by participants when and where they wish. PARTICIPANTS: Fifteen patients aged 10-15 years undergoing NHS fixed appliance treatment. METHODS: Data were collected by in-depth interviews and video diaries throughout the participants' course of orthodontic treatment. Data were analysed using thematic analysis. RESULTS: Young people's friends, family and social media influenced how young people felt about the appearance of their teeth. Young people can perceive negative social judgements are made about them based on the appearance of their teeth; however, the appearance of the brace was not a concern. For some of the young people, the presence of the brace formed a rite of passage throughout adolescence. Pain and discomfort caused by fixed appliances was expected and tolerated and felt normal with time. CONCLUSION: Young people's perceptions about appearance are influenced by people around them and social media. The physical feeling of the brace was normalised, although it did affect young people's lives.


Subject(s)
Emotions , Adolescent , Child , Humans , Qualitative Research
SELECTION OF CITATIONS
SEARCH DETAIL
...