Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Res Insect Sci ; 2: 100036, 2022.
Article in English | MEDLINE | ID: mdl-36003268

ABSTRACT

Mitochondrial heteroplasmy is the occurrence of more than one type of mitochondrial DNA within a single individual. Although generally reported to occur in a small subset of individuals within a species, there are some instances of widespread heteroplasmy across entire populations. Amphylaeus morosus is an Australian native bee species in the diverse and cosmopolitan bee family Colletidae. This species has an extensive geographical range along the eastern Australian coast, from southern Queensland to western Victoria, covering approximately 2,000 km. Seventy individuals were collected from five localities across this geographical range and sequenced using Sanger sequencing for the mitochondrial cytochrome c oxidase subunit I (COI) gene. These data indicate that every individual had the same consistent heteroplasmic sites but no other nucleotide variation, suggesting two conserved and widespread heteroplasmic mitogenomes. Ion Torrent shotgun sequencing revealed that heteroplasmy occurred across multiple mitochondrial protein-coding genes and is unlikely explained by transposition of mitochondrial genes into the nuclear genome (NUMTs). DNA sequence data also demonstrated a consistent co-infection of Wolbachia across the A. morosus distribution with every individual infected with both bacterial strains. Our data are consistent with the presence of two mitogenomes within all individuals examined in this species and suggest a major divergence from standard patterns of mitochondrial inheritance. Because the host's mitogenome and the Wolbachia genome are genetically linked through maternal inheritance, we propose three possible hypotheses that could explain maintenance of the widespread and conserved co-occurring bacterial and mitochondrial genomes in this species.

2.
Proc Biol Sci ; 289(1976): 20220652, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35703047

ABSTRACT

To understand the earliest stages of social evolution, we need to identify species that are undergoing the initial steps into sociality. Amphylaeus morosus is the only unambiguously known social species in the bee family Colletidae and represents an independent origin of sociality within the Apoidea. This allows us to investigate the selective factors promoting the transition from solitary to social nesting. Using genome-wide SNP genotyping, we infer robust pedigree relationships to identify maternity of brood and intracolony relatedness for colonies at the end of the reproductive season. We show that A. morosus forms both matrifilial and full-sibling colonies, both involving complete or almost complete monopolization over reproduction. In social colonies, the reproductive primary was also the primary forager with the secondary female remaining in the nest, presumably as a guard. Social nesting provided significant protection against parasitism and increased brood survivorship in general. We show that secondary females gain large indirect fitness benefits from defensive outcomes, enough to satisfy the conditions of inclusive fitness theory, despite an over-production of males in social colonies. These results suggest an avenue to sociality that involves high relatedness and, very surprisingly, extreme reproductive skew in its earliest stages and raises important questions about the evolutionary steps in pathways to eusociality.


Subject(s)
Reproduction , Social Behavior , Animals , Bees , Biological Evolution , Female , Humans , Male , Pregnancy , Symbiosis
3.
Glob Chang Biol ; 27(24): 6551-6567, 2021 12.
Article in English | MEDLINE | ID: mdl-34592040

ABSTRACT

The 2019-2020 Australian Black Summer wildfires demonstrated that single events can have widespread and catastrophic impacts on biodiversity, causing a sudden and marked reduction in population size for many species. In such circumstances, there is a need for conservation managers to respond rapidly to implement priority remedial management actions for the most-affected species to help prevent extinctions. To date, priority responses have been biased towards high-profile taxa with substantial information bases. Here, we demonstrate that sufficient data are available to model the extinction risk for many less well-known species, which could inform much broader and more effective ecological disaster responses. Using publicly available collection and GIS datasets, combined with life-history data, we modelled the extinction risk from the 2019-2020 catastrophic Australian wildfires for 553 Australian native bee species (33% of all described Australian bee taxa). We suggest that two species are now eligible for listing as Endangered and nine are eligible for listing as Vulnerable under IUCN criteria, on the basis of fire overlap, intensity, frequency, and life-history traits: this tally far exceeds the three Australian bee species listed as threatened prior to the wildfire. We demonstrate how to undertake a wide-scale assessment of wildfire impact on a poorly understood group to help to focus surveys and recovery efforts. We also provide the methods and the script required to make similar assessments for other taxa or in other regions.


Subject(s)
Fires , Wildfires , Animals , Australia , Bees , Biodiversity , Conservation of Natural Resources , Ecosystem , Risk Assessment
4.
Proc Biol Sci ; 287(1925): 20200045, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32290802

ABSTRACT

Island biogeography explores how biodiversity in island ecosystems arises and is maintained. The topographical complexity of islands can drive speciation by providing a diversity of niches that promote adaptive radiation and speciation. However, recent studies have argued that phylogenetic niche conservatism, combined with topographical complexity and climate change, could also promote speciation if populations are episodically fragmented into climate refugia that enable allopatric speciation. Adaptive radiation and phylogenetic niche conservatism therefore both predict that topographical complexity should encourage speciation, but they differ strongly in their inferred mechanisms. Using genetic (mitochondrial DNA (mtDNA) and single-nucleotide polymorphism (SNP)) and morphological data, we show high species diversity (22 species) in an endemic clade of Fijian Homalictus bees, with most species restricted to highlands and frequently exhibiting narrow geographical ranges. Our results indicate that elevational niches have been conserved across most speciation events, contradicting expectations from an adaptive radiation model but concordant with phylogenetic niche conservatism. Climate cycles, topographical complexity, and niche conservatism could interact to shape island biodiversity. We argue that phylogenetic niche conservatism is an important driver of tropical island bee biodiversity but that this phylogenetic inertia also leads to major extinction risks for tropical ectotherms under future warming climates.


Subject(s)
Bees/physiology , Biodiversity , Phylogeography , Animals , Biological Evolution , Ecosystem , Genetic Speciation , Islands , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL