Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Plants (Basel) ; 13(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38475493

ABSTRACT

Giardiasis is a parasitosis caused by Giardia lamblia with significant epidemiological and clinical importance due to its high prevalence and pathogenicity. The lack of optimal therapies for treating this parasite makes the development of new effective chemical entities an urgent need. In the search for new inhibitors of the adenylyl cyclase gNC1 obtained from G. lamblia, 14 extracts from Argentinian native plants were screened. Lepechinia floribunda and L. meyenii extracts exhibited the highest gNC1 inhibitory activity, with IC50 values of 9 and 31 µg/mL, respectively. In silico studies showed rosmarinic acid, a hydroxycinnamic acid present in both mentioned species, to be a promising anti-gNC1 compound. This result was confirmed experimentally, with rosmarinic acid showing an IC50 value of 10.1 µM. Theoretical and experimental findings elucidate the molecular-level mechanism of rosmarinic acid, pinpointing the key interactions stabilizing the compound-enzyme complex and the binding site. These results strongly support that rosmarinic acid is a promising scaffold for developing novel compounds with inhibitory activity against gNC1, which could serve as potential therapeutic agents to treat giardiasis.

2.
Life (Basel) ; 13(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37763221

ABSTRACT

ADPKD is the most common genetic renal disease, characterized by the presence of multiple cysts which, through slow and gradual growth, lead to glomerular filtration rate (GFR) decline and end-stage renal disease. Cystic growth is associated with increased intracellular levels of 3',5'-cyclic adenosine monophosphate (cAMP). Extracellular vesicles (EVs) are proposed to participate in "remote sensing" by transporting different cargoes, but their relevance to ADPKD progression is poorly understood. This study aimed to determine whether cAMP is contained in urinary EVs and, if so, how total and/or EV cAMP contents participate in disease progression. Fourteen ADPKD patients, naïve for V2 receptor antagonism treatment, and seven controls were studied. Progression was evaluated by estimating GFR (eGFR) and height-adjusted total kidney volume (htTKV). Fresh morning urine was collected to determine cAMP by the competitive radioligand assay. Urine EVs were isolated using an adapted centrifugation method and characterized by electron microscopy, dynamic light scanning, flow cytometry with FITC CD63 labeling, protein and RNA content, and AQP2 and GAPDH mRNA detection. Total and EV cAMP was measurable in both control and patient urine samples. Total cAMP was significantly correlated with eGFR and its annual change but inversely correlated with htTKV. The cAMP-EVs showed a bimodal pattern with htTKV, increasing to ~1 L/m and falling at larger sizes. Our results demonstrate that urine cAMP correlates with ADPKD progression markers, and that its extracellular delivery by EVs could reflect the architectural disturbances of the organ.

5.
Biochim Biophys Acta Gen Subj ; 1867(4): 130322, 2023 04.
Article in English | MEDLINE | ID: mdl-36773726

ABSTRACT

BACKGROUND: Ceefourin-1 is a specific MRP4/ABCC4 inhibitor with potential antileukemic activity. In this study, we evaluate the ability of ceefourin-1 alone or in combination with histamine, an approved antileukemic agent, to induce cell differentiation or apoptosis in human acute myeloid leukemic cells. We also examine ceefourin-1 toxicity in mice. METHODS: U937, HL-60, and KG1a cells were used as models for human acute myeloid leukemia. Cyclic AMP efflux was estimated by measuring intracellular and extracellular cAMP levels. Cell differentiation was assessed by levels of CD14 and CD11b by FACS, and CD88 by western blot, and by cell morphology. Apoptosis was evaluated by cleavage of caspase-3 and PARP by western blot, and by annexin V binding assay. Subacute toxicity study of ceefourin-1 was carried out in BALB/c mice. RESULTS: Ceefourin-1 inhibits cAMP exclusion in AML cells and promotes intracellular signaling via CREB. Ceefourin-1 leads AML cells to apoptosis and histamine potentiates this effect, without evidence of cell differentiation. Intraperitoneal administration of ceefourin-1 shows no important alterations in mice blood parameters, hepatic, and renal functions, nor signs of histologic damage. CONCLUSIONS: These results show that ceefourin-1 promotes apoptosis in AML cells that is enhanced by histamine. GENERAL SIGNIFICANCE: This work indicates that ceefourin-1 represents a promising molecule that could be used alone or in combination with histamine for in vivo evaluation in acute myeloid leukemia malignancies.


Subject(s)
Histamine , Leukemia, Myeloid, Acute , Animals , Humans , Mice , Apoptosis , ATP-Binding Cassette Transporters , Histamine/pharmacology , Leukemia, Myeloid, Acute/metabolism , Multidrug Resistance-Associated Proteins
6.
ChemMedChem ; 16(13): 2094-2105, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33783977

ABSTRACT

In this work, we report a derivative of N-(piperidin-4-yl)-1H-pyrrole-2-carboxamide as a new inhibitor for adenylyl cyclase of Giardia lamblia which was obtained from a study using structural data of the nucleotidyl cyclase 1 (gNC1) of this parasite. For such a study, we developed a model for this specific enzyme by using homology techniques, which is the first model reported for gNC1 of G. lamblia. Our studies show that the new inhibitor has a competitive mechanism of action against this enzyme. 2-Hydroxyestradiol was used as the reference compound for comparative studies. Results in this work are important from two points of view. on the one hand, an experimentally corroborated model for gNC1 of G. lamblia obtained by molecular modelling is presented; on the other hand, the new inhibitor obtained is an undoubtedly excellent starting structure for the development of new metabolic inhibitors for G. lamblia.


Subject(s)
Adenylyl Cyclases/metabolism , Enzyme Inhibitors/pharmacology , Giardia lamblia/enzymology , Adenylyl Cyclases/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship
7.
Eur J Pharmacol ; 896: 173913, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33508282

ABSTRACT

Histamine H1 receptor ligands used clinically as antiallergics rank among the most widely prescribed and over-the-counter drugs in the world. They exert the therapeutic actions by blocking the effects of histamine, due to null or negative efficacy towards Gαq-phospholipase C (PLC)-inositol triphosphates (IP3)-Ca2+ and nuclear factor-kappa B cascades. However, there is no information regarding their ability to modulate other receptor responses. The aim of the present study was to investigate whether histamine H1 receptor ligands could display positive efficacy concerning receptor desensitization, internalization, signaling through Gαq independent pathways or even transcriptional regulation of proinflammatory genes. While diphenhydramine, triprolidine and chlorpheniramine activate ERK1/2 (extracellular signal-regulated kinase 1/2) pathway in A549 cells, pre-treatment with chlorpheniramine or triprolidine completely desensitize histamine H1 receptor mediated Ca2+ response, and both diphenhydramine and triprolidine lead to receptor internalization. Unlike histamine, histamine H1 receptor desensitization and internalization induced by antihistamines prove to be independent of G protein-coupled receptor kinase 2 (GRK2) phosphorylation. Also, unlike the reference agonist, the recovery of the number of cell-surface histamine H1 receptors is a consequence of de novo synthesis. On the other hand, all of the ligands lack efficacy regarding cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) mRNA regulation. However, a prolonged exposure with each of the antihistamines impaires the increase in COX-2 and IL-8 mRNA levels induced by histamine, even after ligand removal. Altogether, these findings demonstrate the biased nature of histamine H1 receptor ligands contributing to a more accurate classification, and providing evidence for a more rational and safe use of them.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Histamine Agonists/pharmacology , Histamine H1 Antagonists/pharmacology , Receptors, Histamine H1/drug effects , A549 Cells , Calcium Signaling/drug effects , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Drug Inverse Agonism , Enzyme Activation , G-Protein-Coupled Receptor Kinase 2/genetics , G-Protein-Coupled Receptor Kinase 2/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Humans , Inflammation Mediators/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Ligands , Phosphorylation , Protein Transport , Receptors, Histamine H1/metabolism , Type C Phospholipases/metabolism
8.
FEBS J ; 288(1): 229-243, 2021 01.
Article in English | MEDLINE | ID: mdl-32333821

ABSTRACT

Intracellular cAMP (i-cAMP) levels play an important role in acute myeloid leukemia (AML) cell proliferation and differentiation. Its levels are the result of cAMP production, degradation, and exclusion. We have previously described histamine H2 receptors and MRP4/ABCC4 as two potential targets for AML therapy. Acting through histamine H2 receptors, histamine increases cAMP production/synthesis, while MRP4/ABCC4 is responsible for the exclusion of this cyclic nucleotide. In this study, we show that histamine treatment induces MRP4/ABCC4 expression, augmenting cAMP efflux, and that histamine, in combination with MRP inhibitors, is able to reduce AML cell proliferation. Histamine, through histamine H2 receptor, increases i-cAMP levels and induces MRP4 transcript and protein levels in U937, KG1a, and HL-60 cells. Moreover, histamine induces MRP4 promoter activity in HEK293T cells transfected with histamine H2 receptor (HEK293T-H2 R). Our results support that the cAMP/Epac-PKA pathway, and not MEK/ERK nor PI3K/AKT signaling cascades, is involved in histamine-mediated upregulation of MRP4 levels. Finally, the addition of histamine potentiates the inhibition of U937, KG1a, and HL-60 cell proliferation induced by MRP4 inhibitors. Our data highlight that the use of a poly-pharmacological approach aimed at different molecular targets would be beneficial in AML treatment.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/genetics , Histamine/pharmacology , Multidrug Resistance-Associated Proteins/genetics , Receptors, Histamine H2/genetics , Benzothiazoles/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression Regulation, Leukemic , Genes, Reporter , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , HL-60 Cells , Histamine/metabolism , Humans , Luciferases/genetics , Luciferases/metabolism , Molecular Targeted Therapy/methods , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism , Probenecid/pharmacology , Promoter Regions, Genetic , Propionates/pharmacology , Quinolines/pharmacology , Receptors, Histamine H2/metabolism , Signal Transduction , Triazoles/pharmacology , U937 Cells
9.
Sci Rep ; 10(1): 15619, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32973195

ABSTRACT

Previously we demonstrated that multidrug resistance-associated protein 4 transporter (MRP4) mediates cAMP efflux in bovine spermatozoa and that extracellular cAMP (ecAMP) triggers events associated to capacitation. Here, we deepen the study of the role of MRP4 in bovine sperm function by using MK571, an MRP4 inhibitor. The incubation of spermatozoa with MK571 during 45 min inhibited capacitation-associated events. MRP4 was localized in post-acrosomal region and mid-piece at 15 min capacitation, while at 45 min it was mainly located in the acrosome. After 15 min, MK571 decreased total sperm motility (TM), progressive motility (PM) and several kinematic parameters. The addition of ecAMP rescued MK571 effect and ecAMP alone increased the percentage of motile sperm and kinematics parameters. Since actin cytoskeleton plays essential roles in the regulation of sperm motility, we investigated if MRP4 activity might affect actin polymerization. After 15 min capacitation, an increase in F-actin was observed, which was inhibited by MK571. This effect was reverted by the addition of ecAMP. Furthermore, ecAMP alone increased F-actin levels while no F-actin was detected with ecAMP in the presence of PKA inhibitors. Our results support the importance of cAMP efflux through MRP4 in sperm capacitation and suggest its involvement in the regulation of actin polymerization and motility.


Subject(s)
Acrosome/physiology , Actins/physiology , Cyclic AMP/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Sperm Capacitation , Sperm Motility/physiology , Animals , Cattle , Male , Phosphorylation , Signal Transduction
10.
Int J Biol Macromol ; 161: 836-847, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32553977

ABSTRACT

Kidney cancer accounts for 2.5% of all cancers, with an annual global incidence of almost 300,000 cases leading to 111,000 deaths. Approximately 85% of kidney tumors are renal cell carcinoma (RCC) and their major histologic subtype is clear cell renal cell carcinoma (ccRCC). Although new therapeutic treatments are being designed and applied based on the combination of tyrosine kinase inhibitors and immunotherapy, no major impact on the mortality has been reported so far. MRP4 is a pump efflux that transporters multiple endogenous and exogenous substances. Recently it has been associated with tumoral persistence and cell proliferation in several types of cancer including pancreas, lung, ovary, colon, ostesarcoma, etc. Herein, we demonstrate for the first time, that MRP4 is overexpressed in ccRCC tumors, compared to control renal tissues. In addition, using cell culture models, we observed that MRP4 pharmacological inhibition produces an imbalance in cAMP metabolism, induces cell arrest, changes in lipid composition, increase in cytoplasmic lipid droplets and finally apoptosis. These data provide solid evidence for the future evaluation of MRP4 as a possible new therapeutic target in ccRCC.


Subject(s)
Carcinoma, Renal Cell/genetics , Cell Proliferation/genetics , Kidney Neoplasms/genetics , Multidrug Resistance-Associated Proteins/genetics , Apoptosis/genetics , Carcinoma, Renal Cell/metabolism , Cell Line , Cell Line, Tumor , Cyclic AMP/genetics , HCT116 Cells , Humans , Kidney/metabolism , Kidney Neoplasms/metabolism
11.
Cells ; 9(4)2020 04 22.
Article in English | MEDLINE | ID: mdl-32331276

ABSTRACT

The ß-blocker propranolol (PROP) has been proposed as a repurposed treatment for breast cancer. The similarity of action between ß-agonists and antagonists found on breast cells encouraged us to compare PROP and isoproterenol (ISO, agonist) signaling pathways on a human breast cell line. Cell proliferation was measured by cell counting and DNA-synthesis. Cell adhesion was measured counting the cells that remained adhered to the plastic after different treatments. Changes in actin cytoskeleton were observed by fluorescence staining and Western Blot. ISO and PROP caused a diminution of cell proliferation and an increase of cell adhesion, reverted by the pure ß-antagonist ICI-118551. ISO and PROP induced a reorganization of actin cytoskeleton increasing F-actin, p-COFILIN and p-LIMK. While ISO elicited a marked enhancement of cAMP concentrations and an increase of vasodilator-stimulated phosphoprotein (VASP) and cAMP response element-binding protein (CREB) phosphorylation, PROP did not. Clathrin-mediated endocytosis inhibition or ß-arrestin1 dominant-negative mutant abrogated PROP-induced cell adhesion and COFILIN phosphorylation. The fact that PROP has been proposed as an adjuvant drug for breast cancer makes it necessary to determine the specific action of PROP in breast models. These results provide an explanation for the discrepancies observed between experimental results and clinical evidence.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Breast/cytology , Propranolol/pharmacology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Cell Adhesion/drug effects , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclic AMP/biosynthesis , Female , Humans , Isoproterenol/pharmacology , Lim Kinases/metabolism , Protein Stability/drug effects , Signal Transduction/drug effects , Time Factors
12.
J Gen Physiol ; 152(5)2020 05 04.
Article in English | MEDLINE | ID: mdl-32259196

ABSTRACT

Alterations in dopamine receptor type 1 (D1R) density are associated with cognitive deficits of aging and schizophrenia. In the prefrontal cortex (PFC), D1R plays a critical role in the regulation of working memory, which is impaired in these cognitive deficit states, but the cellular events triggered by changes in D1R expression remain unknown. A previous report demonstrated that interaction between voltage-gated calcium channel type 2.2 (CaV2.2) and D1R stimulates CaV2.2 postsynaptic surface location in medial PFC pyramidal neurons. Here, we show that in addition to the occurrence of the physical receptor-channel interaction, constitutive D1R activity mediates up-regulation of functional CaV2.2 surface density. We performed patch-clamp experiments on transfected HEK293T cells and wild-type C57BL/6 mouse brain slices, as well as imaging experiments and cAMP measurements. We found that D1R coexpression led to ∼60% increase in CaV2.2 currents in HEK293T cells. This effect was occluded by preincubation with a D1/D5R inverse agonist, chlorpromazine, and by replacing D1R with a D1R mutant lacking constitutive activity. Moreover, D1R-induced increase in CaV2.2 currents required basally active Gs protein, as well as D1R-CaV2.2 interaction. In mice, intraperitoneal administration of chlorpromazine reduced native CaV currents' sensitivity to ω-conotoxin-GVIA and their size by ∼49% in layer V/VI pyramidal neurons from medial PFC, indicating a selective effect on CaV2.2. Additionally, we found that reducing D1/D5R constitutive activity correlates with a decrease in the agonist-induced D1/D5R inhibitory effect on native CaV currents. Our results could be interpreted as a stimulatory effect of D1R constitutive activity on the number of CaV2.2 channels available for dopamine-mediated modulation. Our results contribute to the understanding of the physiological role of D1R constitutive activity and may explain the noncanonical postsynaptic distribution of functional CaV2.2 in PFC neurons.


Subject(s)
Calcium Channels, N-Type/metabolism , Prefrontal Cortex/metabolism , Pyramidal Cells/metabolism , Receptors, Dopamine/metabolism , Animals , Cell Line , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL
13.
Front Pharmacol ; 11: 113, 2020.
Article in English | MEDLINE | ID: mdl-32153413

ABSTRACT

G protein coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR signaling. Canonical mechanism of GPCR desensitization involves receptor phosphorylation by GRKs followed by arrestin recruitment and uncoupling from heterotrimeric G protein. Although ß3-adrenergic receptor (ß3AR) lacks phosphorylation sites by GRKs, agonist treatment proved to induce ß3AR desensitization in many cell types. Here we show that GRK2 mediates short-term desensitization of ß3AR by a phosphorylation independent mechanism but mediated by its domain homologous to the regulator of G protein signaling (RGS). HEK293T cells overexpressing human ß3AR presented a short-term desensitization of cAMP response stimulated by the ß3AR agonist, BRL37344, and not by forskolin. We found that ß3AR desensitization was higher in cells co-transfected with GRK2. Similarly, overexpression of the RGS homology domain but not kinase domain of GRK2 increased ß3AR desensitization. Consistently, stimulation of ß3AR increased interaction between GRK2 and Gαs subunit. Furthermore, in rat cardiomyocytes endogenously expressing ß3AR, transfection with dominant negative mutant of RH domain of GRK2 (GRK2/D110A) increased cAMP response to BRL37344 and inhibited receptor desensitization. We expect our study to be a starting point for more sophisticated characterization of the consequences of GRK2 mediated desensitization of the ß3AR in heart function and disease.

14.
PLoS One ; 15(3): e0229756, 2020.
Article in English | MEDLINE | ID: mdl-32126132

ABSTRACT

The aim of this work was to study the effect of a high sodium (HS) diet on blood pressure and renal function in male adult rats that have been treated with a dual Endothelin receptor antagonist (ERA) during their early postnatal period (day 1 to 20 of life). Male Sprague-Dawley rats were divided in four groups: CNS: control rats with normosodic diet; ERANS: ERA-treated rats with normosodic diet; CHS: control rats with high sodium diet; ERAHS: ERA-treated rats with HS diet. Systolic blood pressure (SBP) was recorded before and after the diet and 24-hour metabolic cage studies were performed. AQP2 and α-ENac expressions were measured by western blot and real time PCR in the renal medulla. Vasopressin (AVP) pathway was evaluated by measuring V2 receptor and adenylyl cyclase 6 (AC6) expression and cAMP production in the renal medulla. Pre-pro ET-1mRNA was also evaluated in the renal medulla. Only rats that had been treated with an ERA during their postnatal period increased their SBP after consumption of a HS diet, showing an impaired capacity to excrete sodium and water, i.e. developing salt sensitivity. This salt sensitivity would be mediated by an increase in renomedullary expression and activity of AQP2 and α-ENaC as a consequence of increased AC6 expression and cAMP production and/or a decreased ET-1 production in the renal medulla. The knowledge of the molecular mechanisms underlying the perinatal programming of salt sensitive hypertension will allow the development of reprogramming strategies in order to avoid this pathology.


Subject(s)
Endothelins/metabolism , Hypertension/etiology , Kidney Medulla/growth & development , Receptors, Endothelin/metabolism , Signal Transduction/physiology , Adult , Animals , Animals, Newborn , Aquaporin 2/metabolism , Blood Pressure/drug effects , Blood Pressure/physiology , Disease Models, Animal , Endothelin Receptor Antagonists/pharmacology , Endothelins/antagonists & inhibitors , Epithelial Sodium Channels/metabolism , Humans , Hypertension/physiopathology , Infant, Newborn , Kidney Medulla/drug effects , Male , Rats , Rats, Sprague-Dawley , Renal Elimination/drug effects , Renal Elimination/physiology , Signal Transduction/drug effects , Sodium Chloride, Dietary/adverse effects , Sodium Chloride, Dietary/metabolism , Vasopressins/metabolism
15.
Pharmacol Res Perspect ; 7(6): e00531, 2019 12.
Article in English | MEDLINE | ID: mdl-31687162

ABSTRACT

Glucocorticoids are among the most effective drugs to treat asthma. However, the severe adverse effects associated generate the need for its therapeutic optimization. Conversely, though histamine is undoubtedly related to asthma development, there is a lack of efficacy of antihistamines in controlling its symptoms, which prevents their clinical application. We have reported that antihistamines potentiate glucocorticoids' responses in vitro and recent observations have indicated that the coadministration of an antihistamine and a synthetic glucocorticoid has synergistic effects on a murine model of allergic rhinitis. Here, the aim of this work is to establish if this therapeutic combination could be beneficial in a murine model of asthma. We used an allergen-induced model of asthma (employing ovalbumin) to evaluate the effects of the synthetic glucocorticoid dexamethasone combined with the antihistamine azelastine. Our results indicate that the cotreatment with azelastine and a suboptimal dose of dexamethasone can improve allergic lung inflammation as shown by a decrease in eosinophils in bronchoalveolar lavage, fewer peribronchial and perivascular infiltrates, and mucin-producing cells. In addition, serum levels of allergen-specific IgE and IgG1 were also reduced, as well as the expression of lung inflammatory-related genes IL-4, IL-5, Muc5AC, and Arginase I. The potentiation of dexamethasone effects by azelastine could allow to reduce the effective glucocorticoid dose needed to achieve a therapeutic effect. These findings provide first new insights into the potential benefits of glucocorticoids and antihistamines combination for the treatment of asthma and grants further research to evaluate this approach in other related inflammatory conditions.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Dexamethasone/pharmacology , Phthalazines/pharmacology , Administration, Intranasal , Animals , Anti-Asthmatic Agents/therapeutic use , Asthma/blood , Asthma/immunology , Asthma/pathology , Dexamethasone/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Synergism , Drug Therapy, Combination/methods , Female , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , HEK293 Cells , Histamine H1 Antagonists, Non-Sedating/pharmacology , Histamine H1 Antagonists, Non-Sedating/therapeutic use , Humans , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Ovalbumin/immunology , Phthalazines/therapeutic use , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/metabolism , Transcriptional Activation/drug effects , Transcriptional Activation/immunology
16.
Life Sci ; 239: 116872, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31525427

ABSTRACT

AIMS: G protein-coupled receptor (GPCR) kinases (GRKs) are mainly involved in the desensitization of GPCRs. Among them, GRK2 has been described to be upregulated in many pathological conditions and its crucial role in cardiac hypertrophy, hypertension, and heart failure promoted the search for pharmacological inhibitors of its activity. There have been several reports of potent and selective inhibitors of GRK2, most of them directed to the kinase domain of the protein. However, the homologous to the regulator of G protein signaling (RH) domain of GRK2 has also been shown to regulate GPCRs signaling. Herein, we searched for potential inhibitors of receptor desensitization mediated by RH domain of GRK2. MATERIALS AND METHODS: We performed a docking-based virtual screening utilizing the crystal structure of GRK2 to search for potential inhibitors of the interaction between GRK2 and Gαq protein. To evaluate the biological activity of compounds we measured, calcium response of histamine H1 receptor (H1R) using Fura-2AM dye and H1R internalization by saturation binding experiments in A549 cells. GRK2(45-178)GFP translocation was determined in HeLa cells through confocal fluorescence imaging. KEY FINDINGS: We identified inhibitors of GRK2 able to reduce the RH mediated desensitization of the histamine H1 receptor and GRK2 translocation to plasma membrane. Also candidates presented adequate lipophilia and cytotoxicity profile. SIGNIFICANCE: We obtained compounds with the ability of reducing RH mediated actions of GRK2 that can be useful as a starting point in the development of novel drug candidates aimed to treat pathologies were GRK2 plays a key role.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/antagonists & inhibitors , G-Protein-Coupled Receptor Kinase 2/metabolism , Protein Kinase Inhibitors/pharmacology , A549 Cells , Computer Simulation , Cyclic AMP-Dependent Protein Kinases/metabolism , G-Protein-Coupled Receptor Kinase 2/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , HeLa Cells , Humans , Mass Screening , Molecular Docking Simulation/methods , Phosphorylation , Protein Binding , Protein Domains , Protein Kinase Inhibitors/chemistry , Receptors, Histamine H1/metabolism , Signal Transduction
17.
J Pharm Pharmacol ; 71(11): 1655-1662, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31456253

ABSTRACT

INTRODUCTION: Hepatocellular carcinoma is the most common liver malignancy and the third leading cause of cancer death worldwide. One crucial limitation in the pharmacotherapy for this tumour is its chemotherapy-resistant nature produced by the overexpression of several members of the ATP-binding cassette protein family that efflux drugs out of cells, as observed with the breast cancer resistant protein (BCRP). OBJECTIVES: This study aimed to assess the ability of Pluronic® F127 to reverse the multidrug resistance phenotype in two human hepatocellular cell lines. METHODS: PLC/PRF/5 and SKHep1 cells were exposed to Pluronic® F127 at several concentrations. The effect of F127 on BCRP expression (mRNA and protein), mitochondrial transmembrane potential and cell hypodiploidy was assessed. Finally, the effect of this copolymer on cytotoxicity of doxorubicin in both hepatoma cell lines was investigated, as expressed by its reverse resistance index. KEY FINDINGS: It was demonstrated that F127 in both cell lines contributes to chemosensitization, as shown by BCRP down-regulation, an altered mitochondrial transmembrane potential and hypodiploidy and reverse resistance index values. A remarkable dependence of these effects significantly correlated with the copolymer concentration. CONCLUSIONS: These findings further uncover the potential usefulness of this copolymer as multidrug resistance reversal agent, increasing the efficacy of cancer therapies.


Subject(s)
Doxorubicin/blood , Doxorubicin/pharmacology , Poloxamer/chemistry , Polyethylenes/chemistry , Polypropylenes/chemistry , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Down-Regulation/drug effects , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Liver Neoplasms/drug therapy , Membrane Potential, Mitochondrial/drug effects
18.
Arch Toxicol ; 93(8): 2279-2294, 2019 08.
Article in English | MEDLINE | ID: mdl-31300867

ABSTRACT

Taurolithocholate (TLC) is a cholestatic bile salt that induces disinsertion of the canalicular transporter Abcc2 (Mrp2, multidrug resistance-associated protein 2). This internalization is mediated by different intracellular signaling proteins such as PI3K, PKCε and MARCK but the initial receptor of TLC remains unknown. A few G protein-coupled receptors interact with bile salts in hepatocytes. Among them, sphingosine-1 phosphate receptor 2 (S1PR2) represents a potential initial receptor for TLC. The aim of this study was to evaluate the role of this receptor and its downstream effectors in the impairment of Abcc2 function induced by TLC. In vitro, S1PR2 inhibition by JTE-013 or its knockdown by small interfering RNA partially prevented the decrease in Abcc2 activity induced by TLC. Moreover, adenylyl cyclase (AC)/PKA and PI3K/Akt inhibition partially prevented TLC effect on canalicular transporter function. TLC produced PKA and Akt activation, which were blocked by JTE-013 and AC inhibitors, connecting S1PR2/AC/PKA and PI3K/Akt in a same pathway. In isolated perfused rat liver, injection of TLC triggered endocytosis of Abcc2 that was accompanied by a sustained decrease in the bile flow and the biliary excretion of the Abcc2 substrate dinitrophenyl-glutathione until the end of the perfusion period. S1PR2 or AC inhibition did not prevent the initial decay, but they accelerated the recovery of these parameters and the reinsertion of Abcc2 into the canalicular membrane. In conclusion, S1PR2 and the subsequent activation of AC, PKA, PI3K and Akt is partially responsible for the cholestatic effects of TLC through sustained internalization of Abcc2.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Adenylyl Cyclases/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Taurolithocholic Acid/pharmacology , Animals , Cells, Cultured , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Liver/metabolism , Metabolic Networks and Pathways/drug effects , Organ Culture Techniques , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyrazoles/pharmacology , Pyridines/pharmacology , Rats, Wistar , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Sphingosine-1-Phosphate Receptors/genetics , Taurolithocholic Acid/metabolism
19.
Mol Pharmacol ; 96(1): 13-25, 2019 07.
Article in English | MEDLINE | ID: mdl-31043460

ABSTRACT

Pancreatic cancer is one of the most lethal types of tumors with no effective therapy available; is currently the third leading cause of cancer in developed countries; and is predicted to become the second deadliest cancer in the United States by 2030. Due to the marginal benefits of current standard chemotherapy, the identification of new therapeutic targets is greatly required. Considering that cAMP pathway is commonly activated in pancreatic ductal adenocarcinoma (PDAC) and its premalignant lesions, we aim to investigate the multidrug resistance-associated protein 4 (MRP4)-dependent cAMP extrusion process as a cause of increased cell proliferation in human PDAC cell lines. Our results from in silico analysis indicate that MRP4 expression may influence PDAC patient outcome; thus, high MRP4 levels could be indicators of poor survival. In addition, we performed in vitro experiments and identified an association between higher MRP4 expression levels and more undifferentiated and malignant models of PDAC and cAMP extrusion capacity. We studied the antiproliferative effect and the overall cAMP response of three MRP4 inhibitors, probenecid, MK571, and ceefourin-1 in PDAC in vitro models. Moreover, MRP4-specific silencing in PANC-1 cells reduced cell proliferation (P < 0.05), whereas MRP4 overexpression in BxPC-3 cells significantly incremented their growth rate in culture (P < 0.05). MRP4 pharmacological inhibition or silencing abrogated cell proliferation through the activation of the cAMP/Epac/Rap1 signaling pathway. Also, extracellular cAMP reverted the antiproliferative effect of MRP4 blockade. Our data highlight the MRP4-dependent cAMP extrusion process as a key participant in cell proliferation, indicating that MRP4 could be an exploitable therapeutic target for PDAC. SIGNIFICANCE STATEMENT: ABCC4/MRP4 is the main transporter responsible for cAMP efflux. In this work, we show that MRP4 expression may influence PDAC patient outcome and identify an association between higher MRP4 expression levels and more undifferentiated and malignant in vitro models of PDAC. Findings prove the involvement of MRP4 in PDAC cell proliferation through a novel extracellular cAMP mitogenic pathway and further support MRP4 inhibition as a promising therapeutic strategy for PDAC treatment.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Cyclic AMP/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Pancreatic Neoplasms/metabolism , Benzothiazoles/pharmacology , Carcinoma, Pancreatic Ductal/genetics , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Computer Simulation , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing , HEK293 Cells , Humans , Pancreatic Neoplasms/genetics , Probenecid/pharmacology , Prognosis , Propionates/pharmacology , Quinolines/pharmacology , Signal Transduction/drug effects , Survival Analysis , Triazoles/pharmacology , Up-Regulation
20.
Int J Biochem Cell Biol ; 112: 88-94, 2019 07.
Article in English | MEDLINE | ID: mdl-31082618

ABSTRACT

Several epidemiologic studies have revealed strong inverse associations between metformin use and risk of colorectal cancer development. Nevertheless, the underlying mechanisms are still uncertain. The Wnt/ß-catenin pathway, which plays a central role in intestinal homeostasis and sporadic colorectal cancer development, is regulated by phosphorylation cascades that are dependent and independent of Wnt. Here we report that a non-canonical Ser552 phosphorylation in ß-catenin, which promotes its nuclear accumulation and transcriptional activity, is blocked by metformin via AMPK-mediated PI3K/Akt signaling inhibition.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Colorectal Neoplasms/metabolism , Metformin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , beta Catenin/metabolism , Cell Line , Colorectal Neoplasms/pathology , Humans , Phosphorylation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...