Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Nat Immunol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956378

ABSTRACT

Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells. We identified three prominent NK cell subsets in healthy human blood: NK1, NK2 and NK3, further differentiated into six distinct subgroups. Our findings delineate the molecular characteristics, key transcription factors, biological functions, metabolic traits and cytokine responses of each subgroup. These data also suggest two separate ontogenetic origins for NK cells, leading to divergent transcriptional trajectories. Furthermore, we analyzed the distribution of NK cell subsets in the lung, tonsils and intraepithelial lymphocytes isolated from healthy individuals and in 22 tumor types. This standardized terminology aims at fostering clarity and consistency in future research, thereby improving cross-study comparisons.

2.
Proc Natl Acad Sci U S A ; 121(11): e2319254121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38442180

ABSTRACT

Natural killer (NK) cells are a vital part of the innate immune system capable of rapidly clearing mutated or infected cells from the body and promoting an immune response. Here, we find that NK cells activated by viral infection or tumor challenge increase uptake of fatty acids and their expression of carnitine palmitoyltransferase I (CPT1A), a critical enzyme for long-chain fatty acid oxidation. Using a mouse model with an NK cell-specific deletion of CPT1A, combined with stable 13C isotope tracing, we observe reduced mitochondrial function and fatty acid-derived aspartate production in CPT1A-deficient NK cells. Furthermore, CPT1A-deficient NK cells show reduced proliferation after viral infection and diminished protection against cancer due to impaired actin cytoskeleton rearrangement. Together, our findings highlight that fatty acid oxidation promotes NK cell metabolic resilience, processes that can be optimized in NK cell-based immunotherapies.


Subject(s)
Neoplasms , Virus Diseases , Humans , Lipid Metabolism , Killer Cells, Natural , Fatty Acids
4.
Eur J Immunol ; 54(2): e2350635, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38059519

ABSTRACT

Tumor immune escape is a major factor contributing to cancer progression and unresponsiveness to cancer therapies. Tumors can produce prostaglandin E2 (PGE2 ), an inflammatory mediator that directly acts on Natural killer (NK) cells to inhibit antitumor immunity. However, precisely how PGE2 influences NK cell tumor-restraining functions remains unclear. Here, we report that following PGE2 treatment, human NK cells exhibited altered expression of specific activating receptors and a reduced ability to degranulate and kill cancer targets. Transcriptional analysis uncovered that PGE2 also differentially modulated the expression of chemokine receptors by NK cells, inhibiting CXCR3 but increasing CXCR4. Consistent with this, PGE2-treated NK cells exhibited decreased migration to CXCL10 but increased ability to migrate toward CXCL12. Using live cell imaging, we showed that in the presence of PGE2 , NK cells were slower and less likely to kill cancer target cells following conjugation. Imaging the sequential stages of NK cell killing revealed that PGE2 impaired NK cell polarization, but not the re-organization of synaptic actin or the release of perforin itself. Together, these findings demonstrate that PGE2 affects multiple but select NK cell functions. Understanding how cancer cells subvert NK cells is necessary to more effectively harness the cancer-inhibitory function of NK cells in treatments.


Subject(s)
Dinoprostone , Killer Cells, Natural , Humans , Dinoprostone/metabolism , Cell Line, Tumor , Immunity
5.
Nat Commun ; 14(1): 5016, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596248

ABSTRACT

TIGIT is an inhibitory receptor expressed on lymphocytes and can inhibit T cells by preventing CD226 co-stimulation through interactions in cis or through competition of shared ligands. Whether TIGIT directly delivers cell-intrinsic inhibitory signals in T cells remains unclear. Here we show, by analysing lymphocytes from matched human tumour and peripheral blood samples, that TIGIT and CD226 co-expression is rare on tumour-infiltrating lymphocytes. Using super-resolution microscopy and other techniques, we demonstrate that ligation with CD155 causes TIGIT to reorganise into dense nanoclusters, which coalesce with T cell receptor (TCR)-rich clusters at immune synapses. Functionally, this reduces cytokine secretion in a manner dependent on TIGIT's intracellular ITT-like signalling motif. Thus, we provide evidence that TIGIT directly inhibits lymphocyte activation, acting independently of CD226, requiring intracellular signalling that is proximal to the TCR. Within the subset of tumours where TIGIT-expressing cells do not commonly co-express CD226, this will likely be the dominant mechanism of action.


Subject(s)
Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating , Humans , Microscopy , Receptors, Immunologic/genetics , Signal Transduction
6.
J Transl Med ; 21(1): 437, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407981

ABSTRACT

BACKGROUND: Mucopolysaccharidosis IIIC (MPSIIIC) is one of four Sanfilippo diseases sharing clinical symptoms of severe cognitive decline and shortened lifespan. The missing enzyme, heparan sulfate acetyl-CoA: α-glucosaminide-N-acetyltransferase (HGSNAT), is bound to the lysosomal membrane, therefore cannot cross the blood-brain barrier or diffuse between cells. We previously demonstrated disease correction in MPSIIIC mice using an Adeno-Associated Vector (AAV) delivering HGSNAT via intraparenchymal brain injections using an AAV2 derived AAV-truetype (AAV-TT) serotype with improved distribution over AAV9. METHODS: Here, intraparenchymal AAV was delivered in sheep using catheters or Hamilton syringes, placed using Brainlab cranial navigation for convection enhanced delivery, to reduce proximal vector expression and improve spread. RESULTS: Hamilton syringes gave improved AAV-GFP distribution, despite lower vector doses and titres. AAV-TT-GFP displayed moderately better transduction compared to AAV9-GFP but both serotypes almost exclusively transduced neurons. Functional HGSNAT enzyme was detected in 24-37% of a 140g gyrencephalic sheep brain using AAV9-HGSNAT with three injections in one hemisphere. CONCLUSIONS: Despite variabilities in volume and titre, catheter design may be critical for efficient brain delivery. These data help inform a clinical trial for MPSIIIC.


Subject(s)
Mucopolysaccharidosis III , Animals , Acetyltransferases/genetics , Acetyltransferases/metabolism , Brain , Dependovirus/genetics , Disease Models, Animal , Genetic Vectors , Heparitin Sulfate/metabolism , Mucopolysaccharidoses/genetics , Mucopolysaccharidoses/therapy , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/therapy , Sheep , Genetic Therapy
7.
Methods Mol Biol ; 2654: 409-420, 2023.
Article in English | MEDLINE | ID: mdl-37106197

ABSTRACT

Here, we describe a method, which we term "shadow imaging," to analyze the secretions of individual cells at immune synapses or other cell contacts. Following immune synapse formation and cellular activation on ligand-rich slides, the position of each cell is recorded using a pulsed immunofluorescence stain against the proteins on the ligand-rich slide surface. The pulsed stain does not penetrate the synaptic cleft, resulting in an unlabeled region or "shadow" beneath cells that is retained following cellular detachment. The secreted components, such as perforin, exosomes, or other types of extracellular vesicles, are retained on the slide and can be analyzed on a single-cell basis using immunofluorescence. The ability to identify single cells secreting different combinations of particles, proteins, and vesicles enables us to better understand the heterogeneity in immune cell secretions and can be used as a novel approach for phenotyping cell populations.


Subject(s)
Exosomes , Ligands , Exosomes/metabolism , Synapses/metabolism , Proteins/metabolism , Perforin/metabolism
8.
Nat Commun ; 13(1): 5646, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36163354

ABSTRACT

Within extreme continental extension areas, ductile middle crust is exhumed at the surface as metamorphic core complexes. Sophisticated quantitative models of extreme extension predicted upward transport of ductile middle-lower crust through time. Here we develop a general model for metamorphic core complexes formation and demonstrate that they result from the collapse of a mountain belt supported by a thickened crustal root. We show that gravitational body forces generated by topography and crustal root cause an upward flow pattern of the ductile lower-middle crust, facilitated by a detachment surface evolving into low-angle normal fault. This detachment surface acquires large amounts of finite strain, consistent with thick mylonite zones found in metamorphic core complexes. Isostatic rebound exposes the detachment in a domed upwarp, while the final Moho discontinuity across the extended region relaxes to a flat geometry. This work suggests that belts of metamorphic core complexes are a fossil signature of collapsed highlands.

9.
Nat Commun ; 13(1): 4437, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35915061

ABSTRACT

The Cenozoic landscape evolution in southwestern North America is ascribed to crustal isostasy, dynamic topography, or lithosphere tectonics, but their relative contributions remain controversial. Here we reconstruct landscape history since the late Eocene by investigating the interplay between mantle convection, lithosphere dynamics, climate, and surface processes using fully coupled four-dimensional numerical models. Our quantified depth-dependent strain rate and stress history within the lithosphere, under the influence of gravitational collapse and sub-lithospheric mantle flow, show that high gravitational potential energy of a mountain chain relative to a lower Colorado Plateau can explain extension directions and stress magnitudes in the belt of metamorphic core complexes during topographic collapse. Profound lithospheric weakening through heating and partial melting, following slab rollback, promoted this extensional collapse. Landscape evolution guided northeast drainage onto the Colorado Plateau during the late Eocene-late Oligocene, south-southwest drainage reversal during the late Oligocene-middle Miocene, and southwest drainage following the late Miocene.

10.
Front Immunol ; 13: 867098, 2022.
Article in English | MEDLINE | ID: mdl-35401556

ABSTRACT

Cytotoxic lymphocytes are critical in our immune defence against cancer and infection. Cytotoxic T lymphocytes and Natural Killer cells can directly lyse malignant or infected cells in at least two ways: granule-mediated cytotoxicity, involving perforin and granzyme B, or death receptor-mediated cytotoxicity, involving the death receptor ligands, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). In either case, a multi-step pathway is triggered to facilitate lysis, relying on active pro-death processes and signalling within the target cell. Because of this reliance on an active response from the target cell, each mechanism of cell-mediated killing can be manipulated by malignant and infected cells to evade cytolytic death. Here, we review the mechanisms of cell-mediated cytotoxicity and examine how cells may evade these cytolytic processes. This includes resistance to perforin through degradation or reduced pore formation, resistance to granzyme B through inhibition or autophagy, and resistance to death receptors through inhibition of downstream signalling or changes in protein expression. We also consider the importance of tumour necrosis factor (TNF)-induced cytotoxicity and resistance mechanisms against this pathway. Altogether, it is clear that target cells are not passive bystanders to cell-mediated cytotoxicity and resistance mechanisms can significantly constrain immune cell-mediated killing. Understanding these processes of immune evasion may lead to novel ideas for medical intervention.


Subject(s)
Neoplasms , Tumor Necrosis Factor-alpha , Granzymes , Perforin , Pore Forming Cytotoxic Proteins , Receptors, Death Domain
11.
J Extracell Vesicles ; 11(4): e12215, 2022 04.
Article in English | MEDLINE | ID: mdl-35415881

ABSTRACT

The diverse origins, nanometre-scale and invasive isolation procedures associated with extracellular vesicles (EVs) mean they are usually studied in bulk and disconnected from their parental cell. Here, we used super-resolution microscopy to directly compare EVs secreted by individual human monocyte-derived macrophages (MDMs). MDMs were differentiated to be M0-, M1- or M2-like, with all three secreting EVs at similar densities following activation. However, M0-like cells secreted larger EVs than M1- and M2-like macrophages. Proteomic analysis revealed variations in the contents of differently sized EVs as well as between EVs secreted by different MDM phenotypes. Super resolution microscopy of single-cell secretions identified that the class II MHC protein, HLA-DR, was expressed on ∼40% of EVs secreted from M1-like MDMs, which was double the frequency observed for M0-like and M2-like EVs. Strikingly, human macrophages, isolated from the resected lungs of cancer patients, secreted EVs that expressed HLA-DR at double the frequency and with greater intensity than M1-like EVs. Quantitative analysis of single-cell EV profiles from all four macrophage phenotypes revealed distinct secretion types, five of which were consistent across multiple sample cohorts. A sub-population of M1-like MDMs secreted EVs similar to lung macrophages, suggesting an expansion or recruitment of cells with a specific EV secretion profile within the lungs of cancer patients. Thus, quantitative analysis of EV heterogeneity can be used for single cell profiling and to reveal novel macrophage biology.


Subject(s)
Extracellular Vesicles , Microscopy , Extracellular Vesicles/metabolism , HLA-DR Antigens/metabolism , Humans , Macrophages , Proteomics
12.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35042775

ABSTRACT

The impact of radiotherapy on the interaction between immune cells and cancer cells is important not least because radiotherapy can be used alongside immunotherapy as a cancer treatment. Unexpectedly, we found that X-ray irradiation of cancer cells induced significant resistance to natural killer (NK) cell killing. This was true across a wide variety of cancer-cell types as well as for antibody-dependent cellular cytotoxicity. Resistance appeared 72 h postirradiation and persisted for 2 wk. Resistance could also occur independently of radiotherapy through pharmacologically induced cell-cycle arrest. Crucially, multiple steps in NK-cell engagement, synapse assembly, and activation were unaffected by target cell irradiation. Instead, radiotherapy caused profound resistance to perforin-induced calcium flux and lysis. Resistance also occurred to a structurally similar bacterial toxin, streptolysin O. Radiotherapy did not affect the binding of pore-forming proteins at the cell surface or membrane repair. Rather, irradiation instigated a defect in functional pore formation, consistent with phosphatidylserine-mediated perforin inhibition. In vivo, radiotherapy also led to a significant reduction in NK cell-mediated clearance of cancer cells. Radiotherapy-induced resistance to perforin also constrained chimeric antigen receptor T-cell cytotoxicity. Together, these data establish a treatment-induced resistance to lymphocyte cytotoxicity that is important to consider in the design of radiotherapy-immunotherapy protocols.


Subject(s)
Cytotoxicity, Immunologic , Neoplasms/metabolism , Radiotherapy , Antibody-Dependent Cell Cytotoxicity , Bacterial Proteins , Cell Line, Tumor , Cell Membrane/metabolism , Humans , Immunotherapy , Killer Cells, Natural/immunology , Perforin/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , Streptolysins
13.
Science ; 374(6568): 697, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34735237

ABSTRACT

A YouTuber's vividly illustrated immune system explainer delights and informs.

14.
Front Immunol ; 12: 720655, 2021.
Article in English | MEDLINE | ID: mdl-34650553

ABSTRACT

Interleukin 1ß (IL-1ß) plays a major role in inflammation and is secreted by immune cells, such as macrophages, upon recognition of danger signals. Its secretion is regulated by the inflammasome, the assembly of which results in caspase 1 activation leading to gasdermin D (GSDMD) pore formation and IL-1ß release. During inflammation, danger signals also activate the complement cascade, resulting in the formation of the membrane attack complex (MAC). Here, we report that stimulation of LPS-primed human macrophages with sub-lytic levels of MAC results in activation of the NOD-like receptor 3 (NLRP3) inflammasome and GSDMD-mediated IL-1ß release. The MAC is first internalized into endosomes and then colocalizes with inflammasome components; adapter protein apoptosis associated speck-like protein containing a CARD (ASC) and NLRP3. Pharmacological inhibitors established that MAC-triggered activation of the NLRP3 inflammasome was dependent on MAC endocytosis. Internalization of the MAC also caused dispersion of the trans-Golgi network. Thus, these data uncover a role for the MAC in activating the inflammasome and triggering IL-1ß release in human macrophages.


Subject(s)
Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Inflammasomes/metabolism , Interleukin-1beta/biosynthesis , Macrophages/immunology , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Biomarkers , Cell Line , Cells, Cultured , Complement System Proteins/immunology , Endocytosis , Endosomes/metabolism , Humans , Macrophage Activation/immunology , Models, Biological , Protein Transport
16.
Front Immunol ; 12: 641521, 2021.
Article in English | MEDLINE | ID: mdl-33796107

ABSTRACT

One mechanism by which monoclonal antibodies (mAb) help treat cancer or autoimmune disease is through triggering antibody-dependent cellular cytotoxicity (ADCC) via CD16 on Natural Killer (NK) cells. Afucosylation is known to increase the affinity of mAbs for CD16 on NK cells and here, we set out to assess how mAb afucosylation affects the dynamics of NK cell interactions, receptor expression and effector functions. An IgG1 version of a clinically important anti-CD20 mAb was compared to its afucosylated counterpart (anti-CD20-AF). Opsonization of CD20-expressing target cells, 721.221 or Daudi, with anti-CD20-AF increased NK cell cytotoxicity and IFNγ secretion, compared to anti-CD20. The afucosylated mAb also caused a more rapid and greater loss of CD16 from NK cell surfaces. Loss of CD16 has recently been shown to be important for NK cell detachment and sequential engagement of multiple target cells. Here, live-cell time-lapse microscopy of individual cell-cell interactions in an aqueous environment and a three-dimensional matrix, revealed that anti-CD20-AF induced more rapid killing of opsonized target cells. In addition, NK cells detached more quickly from target cells opsonized with anti-CD20-AF compared to anti-CD20, which increased engagement of multiple targets and enabled a greater proportion of NK cells to perform serial killing. Inhibition of CD16 shedding with TAPI-0 led to reduced detachment and serial killing. Thus, disassembly of the immune synapse caused by loss of cell surface CD16 is a factor determining the efficiency of ADCC and antibody afucosylation alters the dynamics of intercellular interactions to boost serial killing.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Killer Cells, Natural/immunology , Receptors, IgG/immunology , Antigens, CD20/immunology , Fucose , GPI-Linked Proteins/immunology , Humans , Immunoglobulin G , Immunological Synapses/immunology
17.
J Cell Sci ; 134(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33712452

ABSTRACT

Natural killer (NK) cells can kill infected or transformed cells via a lytic immune synapse. Diseased cells may exhibit altered mechanical properties but how this impacts NK cell responsiveness is unknown. We report that human NK cells were stimulated more effectively to secrete granzymes A and B, FasL (also known as FasLG), granulysin and IFNγ, by stiff (142 kPa) compared to soft (1 kPa) planar substrates. To create surrogate spherical targets of defined stiffness, sodium alginate was used to synthesise soft (9 kPa), medium (34 kPa) or stiff (254 kPa) cell-sized beads, coated with antibodies against activating receptor NKp30 (also known as NCR3) and the integrin LFA-1 (also known as ITGAL). Against stiff beads, NK cells showed increased degranulation. Polarisation of the microtubule-organising centre and lytic granules were impaired against soft targets, which instead resulted in the formation of unstable kinapses. Thus, by varying target stiffness to characterise the mechanosensitivity of immune synapses, we identify soft targets as a blind spot in NK cell recognition. This article has an associated First Person interview with the co-first authors of the paper.


Subject(s)
Killer Cells, Natural , Microtubule-Organizing Center , Cell Line , Cytotoxicity, Immunologic , Humans , Lymphocyte Function-Associated Antigen-1 , Synapses
18.
Biophys J ; 119(12): 2403-2417, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33217385

ABSTRACT

Observing the cell surface and underlying cytoskeleton at nanoscale resolution using super-resolution microscopy has enabled many insights into cell signaling and function. However, the nanoscale dynamics of tissue-specific immune cells have been relatively little studied. Tissue macrophages, for example, are highly autofluorescent, severely limiting the utility of light microscopy. Here, we report a correction technique to remove autofluorescent noise from stochastic optical reconstruction microscopy (STORM) data sets. Simulations and analysis of experimental data identified a moving median filter as an accurate and robust correction technique, which is widely applicable across challenging biological samples. Here, we used this method to visualize lung macrophages activated through Fc receptors by antibody-coated glass slides. Accurate, nanoscale quantification of macrophage morphology revealed that activation induced the formation of cellular protrusions tipped with MHC class I protein. These data are consistent with a role for lung macrophage protrusions in antigen presentation. Moreover, the tetraspanin protein CD81, known to mark extracellular vesicles, appeared in ring-shaped structures (mean diameter 93 ± 50 nm) at the surface of activated lung macrophages. Thus, a moving median filter correction technique allowed us to quantitatively analyze extracellular secretions and membrane structure in tissue-derived immune cells.


Subject(s)
Macrophages , Microscopy , Cell Membrane , Lung , Microtubules
19.
Immunity ; 53(6): 1215-1229.e8, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33220234

ABSTRACT

Inflammation can support or restrain cancer progression and the response to therapy. Here, we searched for primary regulators of cancer-inhibitory inflammation through deep profiling of inflammatory tumor microenvironments (TMEs) linked to immune-dependent control in mice. We found that early intratumoral accumulation of interferon gamma (IFN-γ)-producing natural killer (NK) cells induced a profound remodeling of the TME and unleashed cytotoxic T cell (CTL)-mediated tumor eradication. Mechanistically, tumor-derived prostaglandin E2 (PGE2) acted selectively on EP2 and EP4 receptors on NK cells, hampered the TME switch, and enabled immune evasion. Analysis of patient datasets across human cancers revealed distinct inflammatory TME phenotypes resembling those associated with cancer immune control versus escape in mice. This allowed us to generate a gene-expression signature that integrated opposing inflammatory factors and predicted patient survival and response to immune checkpoint blockade. Our findings identify features of the tumor inflammatory milieu associated with immune control of cancer and establish a strategy to predict immunotherapy outcomes.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Inflammation/immunology , Neoplasms/immunology , Tumor Escape/immunology , Animals , Dinoprostone/metabolism , Humans , Immunotherapy , Inflammation/genetics , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Mice , Neoplasms/therapy , Phenotype , Prognosis , Prostaglandin-Endoperoxide Synthases/genetics , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/immunology
20.
Front Immunol ; 11: 565924, 2020.
Article in English | MEDLINE | ID: mdl-33101286

ABSTRACT

Interleukin (IL)-18 and IL-1ß are potent pro-inflammatory cytokines that contribute to inflammatory conditions such as rheumatoid arthritis and Alzheimer's disease. They are produced as inactive precursors that are activated by large macromolecular complexes called inflammasomes upon sensing damage or pathogenic signals. NLRP3 inflammasome activation is regarded to require a priming step that causes NLRP3 and IL-1ß gene upregulation, and also NLRP3 post-translational licencing. A subsequent activation step leads to the assembly of the complex and the cleavage of pro-IL-18 and pro-IL-1ß by caspase-1 into their mature forms, allowing their release. Here we show that human monocytes, but not monocyte derived macrophages, are able to form canonical NLRP3 inflammasomes in the absence of priming. NLRP3 activator nigericin caused the processing and release of constitutively expressed IL-18 in an unprimed setting. This was mediated by the canonical NLRP3 inflammasome that was dependent on K+ and Cl- efflux and led to ASC oligomerization, caspase-1 and Gasdermin-D (GSDMD) cleavage. IL-18 release was impaired by the NLRP3 inhibitor MCC950 and by the absence of NLRP3, but also by deficiency of GSDMD, suggesting that pyroptosis is the mechanism of release. This work highlights the readiness of the NLRP3 inflammasome to assemble in the absence of priming in human monocytes and hence contribute to the very early stages of the inflammatory response when IL-1ß has not yet been produced. It is important to consider the unprimed setting when researching the mechanisms of NLRP3 activation, as to not overshadow the pathways that occur in the absence of priming stimuli, which might only enhance this response.


Subject(s)
Inflammasomes/metabolism , Macrophages/immunology , Monocytes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Caspase 1/metabolism , Humans , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Macrophage Activation , Nigericin/pharmacology , Phosphate-Binding Proteins/metabolism , Protein Multimerization , Pyroptosis , Signal Transduction , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...