Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Type of study
Publication year range
1.
Commun Biol ; 5(1): 1385, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36536097

ABSTRACT

There is debate in the field of oncolytic virus (OV) therapy, whether a single viral dose, or multiple administrations, is better for tumor control. Using intravital microscopy, we describe the fate of vesicular stomatitis virus (VSV) delivered systemically as a first or a second dose. Following primary administration, VSV binds to the endothelium, initiates tumor infection and activates a proinflammatory response. This initial OV dose induces neutrophil migration into the tumor and limits viral replication. OV administered as a second dose fails to infect the tumor and is captured by intravascular monocytes. Despite a lack of direct infection, this second viral dose, in a monocyte-dependent fashion, enhances and sustains infection by the first viral dose, promotes CD8 T cell recruitment, delays tumor growth and improves survival in multi-dosing OV therapy. Thus, repeated VSV dosing engages monocytes to post-condition the tumor microenvironment for improved infection and anticancer T cell responses. Understanding the complex interactions between the subsequent viral doses is crucial for improving the efficiency of OV therapy and virus-based vaccines.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Rhabdoviridae , Animals , Mice , Monocytes , Tumor Microenvironment
2.
Front Immunol ; 12: 772859, 2021.
Article in English | MEDLINE | ID: mdl-34858432

ABSTRACT

The influenza A virus (IAV) causes a respiratory tract infection with approximately 10% of the population infected by the virus each year. Severe IAV infection is characterized by excessive inflammation and tissue pathology in the lungs. Platelet and neutrophil recruitment to the lung are involved in the pathogenesis of IAV, but the specific mechanisms involved have not been clarified. Using confocal intravital microscopy in a mouse model of IAV infection, we observed profound neutrophil recruitment, platelet aggregation, neutrophil extracellular trap (NET) production and thrombin activation within the lung microvasculature in vivo. Importantly, deficiency or antagonism of the protease-activated receptor 4 (PAR4) reduced platelet aggregation, NET production, and neutrophil recruitment. Critically, inhibition of thrombin or PAR4 protected mice from virus-induced lung tissue damage and edema. Together, these data imply thrombin-stimulated platelets play a critical role in the activation/recruitment of neutrophils, NET release and directly contribute to IAV pathogenesis in the lung.


Subject(s)
Blood Coagulation Disorders/immunology , Blood Platelets/immunology , Extracellular Traps/immunology , Influenza A Virus, H1N1 Subtype/immunology , Lung/immunology , Orthomyxoviridae Infections/immunology , Animals , Blood Coagulation Disorders/metabolism , Blood Coagulation Disorders/virology , Blood Platelets/metabolism , Blood Platelets/virology , Disease Models, Animal , Extracellular Traps/metabolism , Extracellular Traps/virology , Female , Humans , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/immunology , Influenza, Human/metabolism , Influenza, Human/virology , Lung/metabolism , Lung/virology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Neutrophil Infiltration/immunology , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/virology , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Platelet Aggregation/immunology
3.
Front Immunol ; 12: 622537, 2021.
Article in English | MEDLINE | ID: mdl-33841403

ABSTRACT

Introduction: B cells are important regulators of both adaptive and innate immunity. The normal liver contains significant numbers of B cells, and their numbers increase dramatically in immune-mediated liver diseases. Our previous observations suggest a hepatoprotective effect of the antidepressant mirtazapine in human and experimental immune-mediated liver disease. Therefore, we performed a series of experiments to determine the impact of mirtazapine treatment on hepatic B cell homeostasis, as reflected by B cell number, trafficking and phenotype using flow cytometry (FCM) and intravital microscopy (IVM) analysis. Mirtazapine treatment rapidly induced a significant reduction in total hepatic B cell numbers, paralleled by a compositional shift in the predominant hepatic B cell subtype from B2 to B1. This shift in hepatic B cells induced by mirtazapine treatment was associated with a striking increase in total hepatic levels of the chemokine CXCL10, and increased production of CXCL10 by hepatic macrophages and dendritic cells. Furthermore, mirtazapine treatment led to an upregulation of CXCR3, the cognate chemokine receptor for CXCL10, on hepatic B cells that remained in the liver post-mirtazapine. A significant role for CXCR3 in the hepatic retention of B cells post-mirtazapine was confirmed using CXCR3 receptor blockade. In addition, B cells remaining in the liver post-mirtazapine produced lower amounts of the proinflammatory Th1-like cytokines IFNγ, TNFα, and IL-6, and increased amounts of the Th2-like cytokine IL-4, after stimulation in vitro. Conclusion: Mirtazapine treatment rapidly alters hepatic B cell populations, enhancing hepatic retention of CXCR3-expressing innate-like B cells that generate a more anti-inflammatory cytokine profile. Mirtazapine-induced hepatic B cell shifts could potentially represent a novel therapeutic approach to immune-mediated liver diseases characterized by B cell driven pathology.


Subject(s)
Antidepressive Agents/therapeutic use , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Liver Diseases/immunology , Liver/immunology , Mirtazapine/therapeutic use , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Humans , Immunity, Innate , Liver Diseases/therapy , Male , Mice , Mice, Inbred C57BL , Receptors, CXCR3/metabolism , Th1 Cells/immunology , Th2 Cells/immunology
4.
NPJ Vaccines ; 6(1): 9, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33431890

ABSTRACT

Obesity and cirrhosis are associated with poor hepatitis B virus (HBV) vaccine responses, but vaccine efficacy has not been assessed in nonalcoholic fatty liver disease (NAFLD). Sixty-eight HBV-naïve adults with NAFLD were enrolled through the Canadian HBV network and completed three-dose HBV or HBV/HAV vaccine (Engerix-B®, or Twinrix®, GlaxoSmithKline). Anti-HBs titers were measured at 1-3 months post third dose. In 31/68 subjects enrolled at the coordinating-site, T-cell proliferation and follicular T-helper cells (pTFH) were assessed using PBMC. Immune response was also studied in NAFLD mice. NAFLD patients were stratified as low-risk-obesity, BMI < 35 (N = 40) vs. medium-high-risk obesity, BMI > 35 (N = 28). Anti-HBs titers were lower in medium/high-risk obesity, 385 IU/L ± 79 vs. low-risk obesity class, 642 IU/L ± 68.2, p = 0.02. High-risk obesity cases, N = 14 showed lower vaccine-specific-CD3+ CD4+ T-cell response compared to low-risk obesity patients, N = 17, p = 0.02. Low vaccine responders showed dysfunctional pTFH. NAFLD mice showed lower anti-HBs levels and T-cell response vs. controls. In conclusion, we report here that obese individuals with NAFLD exhibit decreased HBV vaccine-specific immune responses.

5.
Blood ; 135(15): 1281-1286, 2020 04 09.
Article in English | MEDLINE | ID: mdl-31951648

ABSTRACT

Antiplatelet therapies have been proposed for the treatment of sepsis, a syndrome resulting from a dysregulated immune response and inappropriate activation of coagulation. Acetylsalicylic acid (ASA) may serve as a potential therapeutic strategy to prevent infection-induced coagulopathy and associated tissue damage. Using intravital microscopy, we found that Staphylococcus aureus infection induced neutrophil recruitment, platelet aggregation, and neutrophil extracellular trap (NET) release in the liver. Mice pretreated with ASA, or animals receiving ASA 3 hours postinfection, had significantly reduced platelet aggregation and NET release. Additionally, ASA-treated mice had reduced intravascular thrombin activity and microvascular occlusion as compared with untreated S aureus-infected mice. This inhibition of coagulation was accompanied by decreased levels of alanine aminotransferase and aspartate aminotransferase in the plasma, indicating less liver damage. Finally, bacterial loads (colony-forming units per milliliter) in liver, lung, and spleen were not different between groups, and the phagocytic capacity of Kupffer cells was preserved following ASA treatment. These results suggest that ASA may serve as a therapeutic approach to sepsis through its ability to reduce the deleterious action of immunothrombi while maintaining innate immune functions.


Subject(s)
Aspirin/therapeutic use , Blood Coagulation/drug effects , Disseminated Intravascular Coagulation/prevention & control , Platelet Aggregation Inhibitors/therapeutic use , Sepsis/complications , Staphylococcal Infections/complications , Animals , Disseminated Intravascular Coagulation/blood , Disseminated Intravascular Coagulation/etiology , Mice , Mice, Inbred C57BL , Platelet Aggregation/drug effects , Sepsis/blood , Staphylococcal Infections/blood , Staphylococcus aureus/physiology
6.
Platelets ; 31(7): 925-931, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-31851856

ABSTRACT

After infection, neutrophils release neutrophil extracellular traps (NETs), decondensed DNA fibers decorated with both nuclear proteins and proteins derived from intracellular granules. These structures have a fundamental role in the development of immunothrombosis; a physiological process mediated by immune cells and molecules from the coagulation system that facilitates the recognition, containment, and destruction of pathogens. Although NETs and immunothrombi are widely hypothesized to be key host defense responses responsible for limiting bacterial dissemination, their actual role in this process has not been formally assessed within the context of a bloodstream infection. Mice were first treated with LPS to generate inflammation (NETs and immunothrombi) and then bacteria dissemination was analyzed by intravital microscopy and colony-forming units (CFU) assay. Blocking NETs or coagulation by the administration of DNase or Argatroban (thrombin inhibitor), respectively, did not modify the percentage of bacteria capture by Kupffer cells, neutrophils or platelets. Moreover, both inhibitors reduced the number of bacteria in the spleen, without modifying CFUs in the liver or lung. In conclusion, we demonstrate that immunothrombi are not necessary to limit the dissemination of bloodstream bacterial infections.


Subject(s)
Immunotherapy/methods , Sepsis/drug therapy , Animals , Disease Models, Animal , Humans , Mice
7.
Front Immunol ; 10: 2988, 2019.
Article in English | MEDLINE | ID: mdl-31969883

ABSTRACT

Non-alcoholic fatty liver disease is a spectrum of liver pathology ranging from simple steatosis to steatohepatitis and can progress to diseases associated with poor outcomes including cirrhosis and hepatocellular carcinoma (HCC). NAFLD research has typically focused on the pathophysiology associated with lipid metabolism, using traditional measures such as histology and serum transaminase assessment; these methods have provided key information regarding NAFLD progression. Although valuable, these techniques are limited in providing further insight into the mechanistic details of inflammation associated with NAFLD. Intravital microscopy (IVM) is an advanced tool that allows for real-time visualization of cellular behavior and interaction in a living animal. Extensive IVM imaging has been conducted in liver, but, in the context of NAFLD, this technique has been regularly avoided due to significant tissue autofluorescence, a phenomenon that is exacerbated with steatosis. Here, we demonstrate that, using multiple imaging platforms and optimization techniques to minimize autofluorescence, IVM in fatty liver is possible. Successful fatty liver intravital imaging provides details on cell trafficking, recruitment, function, and behavior in addition to information about blood flow and vessel dynamics, information which was previously difficult to obtain. As more than 30% of the global population is overweight/obese, there is a significant proportion of the population at risk for NAFLD and complications due to NAFLD (liver decompensation, cirrhosis, HCC). IVM has the potential to elucidate the poorly understood mechanisms surrounding liver inflammation and NAFLD progression and possesses the potential to identify key processes that may be targeted for future therapeutic interventions in NAFLD patients.


Subject(s)
Intravital Microscopy , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/pathology , Animals , Cell Tracking , Disease Models, Animal , Disease Progression , Fluorescent Antibody Technique , Immunohistochemistry , Intravital Microscopy/methods , Mice , Phenotype
8.
Cell Host Microbe ; 24(2): 271-284.e3, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30033122

ABSTRACT

During sepsis, small blood vessels can become occluded by large platelet aggregates of poorly understood etiology. During Staphylococcal aureus infection, sepsis severity is linked to the bacterial α-toxin (α-hemolysin, AT) through unclear mechanisms. In this study, we visualized intravascular events in the microcirculation and found that intravenous AT injection induces rapid platelet aggregation, forming dynamic micro-thrombi in the microcirculation. These aggregates are retained in the liver sinusoids and kidney glomeruli, causing multi-organ dysfunction. Acute staphylococcal infection results in sequestration of most bacteria by liver macrophages. Platelets are initially recruited to these macrophages and help eradicate S. aureus. However, at later time points, AT causes aberrant and damaging thrombosis throughout the liver. Treatment with an AT neutralizing antibody (MEDI4893∗) prevents platelet aggregation and subsequent liver damage, without affecting the initial and beneficial platelet recruitment. Thus, AT neutralization may represent a promising approach to combat staphylococcal-induced intravascular coagulation and organ dysfunction.


Subject(s)
Bacteremia/physiopathology , Bacterial Toxins/toxicity , Hemolysin Proteins/toxicity , Liver/pathology , Platelet Aggregation/drug effects , Staphylococcal Infections/physiopathology , ADAM10 Protein/genetics , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/pharmacology , Bacterial Toxins/immunology , Broadly Neutralizing Antibodies , Hemolysin Proteins/immunology , Host-Pathogen Interactions/physiology , Humans , Intravital Microscopy/methods , Liver/drug effects , Liver/microbiology , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Mutant Strains , Platelet Aggregation/physiology , Staphylococcus aureus/pathogenicity
9.
Semin Thromb Hemost ; 44(2): 91-101, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29165740

ABSTRACT

Platelets have classically been considered crucial effector cells in hemostasis, but now are increasingly recognized as players during inflammatory responses in innate and adaptive immunity. Platelets can recognize and kill invading pathogens, and, upon stimulation, also release a wide array of mediators that modify immune and endothelial cell responses. Increased platelet activity can protect the host against infectious insults; however, the excessive activity can lead to inflammation-mediated tissue damage. These critical roles highlight the necessity of balancing the platelet response at the intersection of hemostasis and inflammation. In this review, the authors present the current understanding of the inflammatory role of platelets. They also highlight recent findings on a modulator that links inflammation and deleterious tissue damage in disease pathogenesis.


Subject(s)
Blood Platelets/metabolism , Immunity, Innate/immunology , Inflammation Mediators/immunology , Inflammation/immunology , Humans
10.
Blood ; 129(10): 1357-1367, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28073784

ABSTRACT

Neutrophil extracellular traps (NETs; webs of DNA coated in antimicrobial proteins) are released into the vasculature during sepsis where they contribute to host defense, but also cause tissue damage and organ dysfunction. Various components of NETs have also been implicated as activators of coagulation. Using multicolor confocal intravital microscopy in mouse models of sepsis, we observed profound platelet aggregation, thrombin activation, and fibrin clot formation within (and downstream of) NETs in vivo. NETs were critical for the development of sepsis-induced intravascular coagulation regardless of the inciting bacterial stimulus (gram-negative, gram-positive, or bacterial products). Removal of NETs via DNase infusion, or in peptidylarginine deiminase-4-deficient mice (which have impaired NET production), resulted in significantly lower quantities of intravascular thrombin activity, reduced platelet aggregation, and improved microvascular perfusion. NET-induced intravascular coagulation was dependent on a collaborative interaction between histone H4 in NETs, platelets, and the release of inorganic polyphosphate. Real-time perfusion imaging revealed markedly improved microvascular perfusion in response to the blockade of NET-induced coagulation, which correlated with reduced markers of systemic intravascular coagulation and end-organ damage in septic mice. Together, these data demonstrate, for the first time in an in vivo model of infection, a dynamic NET-platelet-thrombin axis that promotes intravascular coagulation and microvascular dysfunction in sepsis.


Subject(s)
Disseminated Intravascular Coagulation/immunology , Extracellular Traps/immunology , Sepsis/immunology , Animals , Blood Platelets/immunology , Disease Models, Animal , Mice , Mice, Inbred C57BL , Microscopy, Confocal
11.
Clin Transl Immunology ; 5(7): e89, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27525062

ABSTRACT

Disseminated intravascular coagulation (DIC) is a frequent complication in sepsis that is associated with worse outcomes and higher mortality in patients. In addition to the uncontrolled generation of thrombi throughout the patient's vasculature, DIC often consumes large quantities of clotting factors leaving the patient susceptible to hemorrhaging. Owing to these complications, patients often receive anticoagulants to treat the uncontrolled clotting, often with mixed outcomes. This lack of success with the current array of anticoagulants can be partly explained by the fact that during sepsis clotting is often initiated by the immune system. Systemic inflammation has the capacity to activate and amplify coagulation and, as such, potential therapies for the treatment of sepsis-associated DIC need to address the interaction between inflammation and coagulation. Recent studies have suggested that platelets and neutrophil extracellular traps (NETs) are the key mediators of infection-induced coagulation. This review explores current anticoagulant therapies and discusses the development of future therapies to target platelet and NET-mediated coagulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...