Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38895245

ABSTRACT

Mutations in Prkra gene, which encodes PACT/RAX cause early onset primary dystonia DYT-PRKRA, a movement disorder that disrupts coordinated muscle movements. PACT/RAX activates protein kinase R (PKR, aka EIF2AK2) by a direct interaction in response to cellular stressors to mediate phosphorylation of the α subunit of the eukaryotic translation initiation factor 2 (eIF2α). Mice homozygous for a naturally arisen, recessively inherited frameshift mutation, Prkra lear-5J exhibit progressive dystonia. In the present study, we investigate the biochemical and developmental consequences of the Prkra lear-5J mutation. Our results indicate that the truncated PACT/RAX protein retains its ability to interact with PKR, however, it inhibits PKR activation. Furthermore, mice homozygous for the mutation have abnormalities in the cerebellar development as well as a severe lack of dendritic arborization of Purkinje neurons. Additionally, reduced eIF2α phosphorylation is noted in the cerebellums and Purkinje neurons of the homozygous Prkra lear-5J mice. These results indicate that PACT/RAX mediated regulation of PKR activity and eIF2α phosphorylation plays a role in cerebellar development and contributes to the dystonia phenotype resulting from this mutation.

2.
Genome Med ; 16(1): 75, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822427

ABSTRACT

BACKGROUND: Congenital hypopituitarism (CH) and its associated syndromes, septo-optic dysplasia (SOD) and holoprosencephaly (HPE), are midline defects that cause significant morbidity for affected people. Variants in 67 genes are associated with CH, but a vast majority of CH cases lack a genetic diagnosis. Whole exome and whole genome sequencing of CH patients identifies sequence variants in genes known to cause CH, and in new candidate genes, but many of these are variants of uncertain significance (VUS). METHODS: The International Mouse Phenotyping Consortium (IMPC) is an effort to establish gene function by knocking-out all genes in the mouse genome and generating corresponding phenotype data. We used mouse embryonic imaging data generated by the Deciphering Mechanisms of Developmental Disorders (DMDD) project to screen 209 embryonic lethal and sub-viable knockout mouse lines for pituitary malformations. RESULTS: Of the 209 knockout mouse lines, we identified 51 that have embryonic pituitary malformations. These genes not only represent new candidates for CH, but also reveal new molecular pathways not previously associated with pituitary organogenesis. We used this list of candidate genes to mine whole exome sequencing data of a cohort of patients with CH, and we identified variants in two unrelated cases for two genes, MORC2 and SETD5, with CH and other syndromic features. CONCLUSIONS: The screening and analysis of IMPC phenotyping data provide proof-of-principle that recessive lethal mouse mutants generated by the knockout mouse project are an excellent source of candidate genes for congenital hypopituitarism in children.


Subject(s)
Hypopituitarism , Mice, Knockout , Pituitary Gland , Hypopituitarism/genetics , Animals , Humans , Pituitary Gland/metabolism , Pituitary Gland/abnormalities , Pituitary Gland/pathology , Mice , Phenotype , Female , Male , Disease Models, Animal , Exome Sequencing , Septo-Optic Dysplasia/genetics
3.
Cell Metab ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38718793

ABSTRACT

Obesity alters levels of pituitary hormones that govern hepatic immune-metabolic homeostasis, dysregulation of which leads to nonalcoholic fatty liver disease (NAFLD). However, the impact of obesity on intra-pituitary homeostasis is largely unknown. Here, we uncovered a blunted unfolded protein response (UPR) but elevated inflammatory signatures in pituitary glands of obese mice and humans. Furthermore, we found that obesity inflames the pituitary gland, leading to impaired pituitary inositol-requiring enzyme 1α (IRE1α)-X-box-binding protein 1 (XBP1) UPR branch, which is essential for protecting against pituitary endocrine defects and NAFLD progression. Intriguingly, pituitary IRE1-deletion resulted in hypothyroidism and suppressed the thyroid hormone receptor B (THRB)-mediated activation of Xbp1 in the liver. Conversely, activation of the hepatic THRB-XBP1 axis improved NAFLD in mice with pituitary UPR defect. Our study provides the first evidence and mechanism of obesity-induced intra-pituitary cellular defects and the pathophysiological role of pituitary-liver UPR communication in NAFLD progression.

5.
Biometrics ; 79(2): 1559-1572, 2023 06.
Article in English | MEDLINE | ID: mdl-35622236

ABSTRACT

With recent advances in technologies to profile multi-omics data at the single-cell level, integrative multi-omics data analysis has been increasingly popular. It is increasingly common that information such as methylation changes, chromatin accessibility, and gene expression are jointly collected in a single-cell experiment. In biomedical studies, it is often of interest to study the associations between various data types and to examine how these associations might change according to other factors such as cell types and gene regulatory components. However, since each data type usually has a distinct marginal distribution, joint analysis of these changes of associations using multi-omics data is statistically challenging. In this paper, we propose a flexible copula-based framework to model covariate-dependent correlation structures independent of their marginals. In addition, the proposed approach could jointly combine a wide variety of univariate marginal distributions, either discrete or continuous, including the class of zero-inflated distributions. The performance of the proposed framework is demonstrated through a series of simulation studies. Finally, it is applied to a set of experimental data to investigate the dynamic relationship between single-cell RNA sequencing, chromatin accessibility, and DNA methylation at different germ layers during mouse gastrulation.


Subject(s)
DNA Methylation , Multiomics , Animals , Mice , Computer Simulation , Chromatin/genetics
6.
Behav Genet ; 53(1): 53-62, 2023 02.
Article in English | MEDLINE | ID: mdl-36422733

ABSTRACT

Peromyscus maniculatus, including the laboratory stock BW, have been used as a model organism for autism spectrum disorder and obsessive-compulsive disorder because of the high occurrence of stereotypy. Several studies have identified neurological and environmental components of the phenotype; however, the heritability of the phenotype has not been examined. This study characterizes the incidence and heritability of vertical jumping stereotypy (VS) and backflipping (BF) behavior in the BW stock of the Peromyscus Genetic Stock Center, which are indicative of autism spectrum disorders. In addition, interspecies crosses between P. maniculatus and P. polionotus were also performed to further dissect genetically stereotypic behavior. The inheritance pattern of VS suggests that multiple genes result in a quantitative trait with low VS being dominant over high VS. The inheritance pattern of BF suggests that fewer genes are involved, with one allele causing BF in a dominant fashion. An association analysis in BW could reveal the underlying genetic loci associated with stereotypy in P. maniculatus, especially for the BF behavior.


Subject(s)
Autism Spectrum Disorder , Peromyscus , Animals , Peromyscus/genetics , Stereotyped Behavior , Phenotype
7.
Mol Psychiatry ; 27(4): 2291-2303, 2022 04.
Article in English | MEDLINE | ID: mdl-35210569

ABSTRACT

Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for ASD. ASH1L methylates Histone H3 on Lysine 36, which is proposed to result primarily in transcriptional activation. However, how mutations in ASH1L lead to deficits in neuronal connectivity associated with ASD pathogenesis is not known. We report that ASH1L regulates neuronal morphogenesis by counteracting the catalytic activity of Polycomb Repressive complex 2 group (PRC2) in stem cell-derived human neurons. Depletion of ASH1L decreases neurite outgrowth and decreases expression of the gene encoding the neurotrophin receptor TrkB whose signaling pathway is linked to neuronal morphogenesis. The neuronal morphogenesis defect is overcome by inhibition of PRC2 activity, indicating that a balance between the Trithorax group protein ASH1L and PRC2 activity determines neuronal morphology. Thus, our work suggests that ASH1L may epigenetically regulate neuronal morphogenesis by modulating pathways like the BDNF-TrkB signaling pathway. Defects in neuronal morphogenesis could potentially impair the establishment of neuronal connections which could contribute to the neurodevelopmental pathogenesis associated with ASD in patients with ASH1L mutations.


Subject(s)
DNA-Binding Proteins , Histone-Lysine N-Methyltransferase , DNA-Binding Proteins/genetics , Epigenesis, Genetic/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Neurons/metabolism
8.
Nat Commun ; 12(1): 2028, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795686

ABSTRACT

Germline mutations in BRAF and other components of the MAPK pathway are associated with the congenital syndromes collectively known as RASopathies. Here, we report the association of Septo-Optic Dysplasia (SOD) including hypopituitarism and Cardio-Facio-Cutaneous (CFC) syndrome in patients harbouring mutations in BRAF. Phosphoproteomic analyses demonstrate that these genetic variants are gain-of-function mutations leading to activation of the MAPK pathway. Activation of the MAPK pathway by conditional expression of the BrafV600E/+ allele, or the knock-in BrafQ241R/+ allele (corresponding to the most frequent human CFC-causing mutation, BRAF p.Q257R), leads to abnormal cell lineage determination and terminal differentiation of hormone-producing cells, causing hypopituitarism. Expression of the BrafV600E/+ allele in embryonic pituitary progenitors leads to an increased expression of cell cycle inhibitors, cell growth arrest and apoptosis, but not tumour formation. Our findings show a critical role of BRAF in hypothalamo-pituitary-axis development both in mouse and human and implicate mutations found in RASopathies as a cause of endocrine deficiencies in humans.


Subject(s)
Gain of Function Mutation , Hypopituitarism/genetics , Hypothalamus/metabolism , Pituitary Gland/metabolism , Proto-Oncogene Proteins B-raf/genetics , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cells, Cultured , Child , Child, Preschool , Corticotrophs/cytology , Corticotrophs/metabolism , Ectodermal Dysplasia/genetics , Facies , Failure to Thrive/genetics , HEK293 Cells , Heart Defects, Congenital/genetics , Humans , Infant , MAP Kinase Signaling System/genetics , Melanotrophs/cytology , Melanotrophs/metabolism , Mice, Knockout , Mice, Transgenic , Proto-Oncogene Proteins B-raf/metabolism , Exome Sequencing/methods
9.
BMC Genomics ; 21(1): 622, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32912160

ABSTRACT

BACKGROUND: Peromyscus are the most common mammalian species in North America and are widely used in both laboratory and field studies. The deer mouse, P. maniculatus and the old-field mouse, P. polionotus, are closely related and can generate viable and fertile hybrid offspring. The ability to generate hybrid offspring, coupled with developing genomic resources, enables researchers to conduct linkage analysis studies to identify genomic loci associated with specific traits. RESULTS: We used available genomic data to identify DNA polymorphisms between P. maniculatus and P. polionotus and used the polymorphic data to identify the range of genetic complexity that underlies physiological and behavioral differences between the species, including cholesterol metabolism and genes associated with autism. In addition, we used the polymorphic data to conduct a candidate gene linkage analysis for the Dominant spot trait and determined that Dominant spot is linked to a region of chromosome 20 that contains a strong candidate gene, Sox10. During the linkage analysis, we found that the spot size varied quantitively in affected Peromyscus based on genetic background. CONCLUSIONS: The expanding genomic resources for Peromyscus facilitate their use in linkage analysis studies, enabling the identification of loci associated with specific traits. More specifically, we have linked a coat color spotting phenotype, Dominant spot, with Sox10, a member the neural crest gene regulatory network, and that there are likely two genetic modifiers that interact with Dominant spot. These results establish Peromyscus as a model system for identifying new alleles of the neural crest gene regulatory network.


Subject(s)
Genetic Linkage , Peromyscus/genetics , Quantitative Trait Loci , Animals , Behavior, Animal , Genetic Speciation , Hybridization, Genetic , Peromyscus/physiology , Polymorphism, Genetic , SOXE Transcription Factors/genetics
10.
Sci Adv ; 5(10): eaax7031, 2019 10.
Article in English | MEDLINE | ID: mdl-31633029

ABSTRACT

Smoking is the largest preventable cause of death and disease in the United States. However, <5% of quit attempts are successful, underscoring the urgent need for novel therapeutics. Microglia are one untapped therapeutic target. While previous studies have shown that microglia mediate both inflammatory responses in the brain and brain plasticity, little is known regarding their role in nicotine dependence and withdrawal phenotypes. Here, we examined microglial changes in the striatum-a mesolimbic region implicated in the rewarding effects of drugs and the affective disruptions occurring during withdrawal. We show that both nicotine and withdrawal induce microglial morphological changes; however, proinflammatory effects and anxiogenic behaviors were observed only during nicotine withdrawal. Pharmacological microglial depletion during withdrawal prevented these effects. These results define differential effects of nicotine and withdrawal on inflammatory signaling in the brain, laying the groundwork for development of future smoking cessation therapeutics.


Subject(s)
Microglia/pathology , Nucleus Accumbens/metabolism , Substance Withdrawal Syndrome/pathology , Animals , Anxiety/etiology , Disease Models, Animal , Locomotion , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , NADPH Oxidase 2/metabolism , Nicotine/administration & dosage , Organic Chemicals/pharmacology , Reactive Oxygen Species/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Signal Transduction/drug effects , Substance Withdrawal Syndrome/complications , Substance Withdrawal Syndrome/metabolism
11.
Front Neurosci ; 13: 582, 2019.
Article in English | MEDLINE | ID: mdl-31293366

ABSTRACT

The complex development of the human nervous system has been traditionally studied using a combination of animal models, human post-mortem brain tissue, and human genetics studies. However, there has been a lack of experimental human cellular models that would allow for a more precise elucidation of the intricate dynamics of early human brain development. The development of stem cell technologies, both embryonic and induced pluripotent stem cells (iPSCs), has given neuroscientists access to the previously inaccessible early stages of human brain development. In particular, the recent development of three-dimensional culturing methodologies provides a platform to study the differentiation of stem cells in both normal development and disease states in a more in vivo like context. Three-dimensional neural models or cerebral organoids possess an innate advantage over two-dimensional neural cultures as they can recapitulate tissue organization and cell type diversity that resemble the developing brain. Brain organoids also provide the exciting opportunity to model the integration of different brain regions in vitro. Furthermore, recent advances in the differentiation of non-neuronal tissue from stem cells provides the opportunity to study the interaction between the developing nervous system and other non-neuronal systems that impact neuronal function. In this review, we discuss the potential and limitations of the organoid system to study in vitro neurological diseases that arise in the neuroendocrine and the enteric nervous system or from interactions with the immune system.

12.
Endocrinology ; 159(9): 3287-3305, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30085028

ABSTRACT

The pituitary gland is a critical organ that is necessary for many physiological processes, including growth, reproduction, and stress response. The secretion of pituitary hormones from specific cell types regulates these essential processes. Pituitary hormone cell types arise from a common pool of pituitary progenitors, and mutations that disrupt the formation and differentiation of pituitary progenitors result in hypopituitarism. Canonical WNT signaling through CTNNB1 (ß-catenin) is known to regulate the formation of the POU1F1 lineage of pituitary cell types. When ß-catenin is deleted during the initial formation of the pituitary progenitors, Pou1f1 is not transcribed, which leads to the loss of the POU1F1 lineage. However, when ß-catenin is deleted after lineage specification, there is no observable effect. Similarly, the generation of a ß-catenin gain-of-function allele in early pituitary progenitors or stem cells results in the formation of craniopharyngiomas, whereas stimulating ß-catenin in differentiated cell types has no effect. PROP1 is a pituitary-specific transcription factor, and the peak of PROP1 expression coincides with a critical time point in pituitary organogenesis-that is, after pituitary progenitor formation but before lineage specification. We used a Prop1-cre to conduct both loss- and gain-of-function studies on ß-catenin during this critical time point. Our results demonstrate that pituitary progenitors remain sensitive to both loss and gain of ß-catenin at this time point, and that either manipulation results in hypopituitarism.


Subject(s)
Craniopharyngioma/genetics , Hypopituitarism/genetics , Pituitary Gland/embryology , Stem Cells/metabolism , Transcription Factor Pit-1/genetics , beta Catenin/genetics , Animals , Cell Lineage , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Lactotrophs/cytology , Mice , Organogenesis , Pituitary Gland/metabolism , Somatotrophs/cytology , Stem Cells/cytology , Thyrotrophs/cytology , Transcription Factor Pit-1/metabolism , Wnt Signaling Pathway
13.
Endocrinology ; 158(10): 3339-3353, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28938441

ABSTRACT

The pituitary organizer is a domain within the ventral diencephalon that expresses Bmp4, Fgf8, and Fgf10, which induce the formation of the pituitary precursor, Rathke's pouch, from the oral ectoderm. The WNT signaling pathway regulates this pituitary organizer such that loss of Wnt5a leads to an expansion of the pituitary organizer and an enlargement of Rathke's pouch. WNT signaling is classified into canonical signaling, which is mediated by ß-CATENIN, and noncanonical signaling, which operates independently of ß-CATENIN. WNT5A is typically classified as a noncanonical WNT; however, other WNT family members are expressed in the ventral diencephalon and nuclear localized ß-CATENIN is observed in the ventral diencephalon. Therefore, we sought to determine whether canonical WNT signaling is necessary for regulation of pituitary organizer function. Using a conditional loss-of-function approach, we deleted ß-catenin within the mouse ventral diencephalon. Mutant embryos have a smaller Rathke's pouch, resulting from a reduced pituitary organizer, especially Fgf8. This result suggests that canonical WNT signaling promotes pituitary organizer function, instead of inhibiting it. To test this hypothesis, we stimulated canonical WNT signaling in the ventral diencephalon using an inducible gain-of-function allele of ß-catenin and found that stimulating canonical WNT signaling expands the domain of Fgf8 and results in a dysmorphic Rathke's pouch. These results demonstrate that canonical WNT signaling in the ventral diencephalon is necessary for proper expression of pituitary organizer genes and suggests that a balance of both canonical and noncanonical WNT signaling is necessary to ensure proper formation of Rathke's pouch.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Pituitary Gland/embryology , Wnt Signaling Pathway/genetics , beta Catenin/genetics , Animals , Bone Morphogenetic Protein 4/metabolism , Diencephalon/embryology , Diencephalon/metabolism , Diencephalon/pathology , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 8/metabolism , In Situ Hybridization , In Situ Nick-End Labeling , Mice , Mutation , Pituitary Gland/metabolism , Pituitary Gland/pathology , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism , beta Catenin/metabolism
14.
Mol Cell Endocrinol ; 445: 14-26, 2017 04 15.
Article in English | MEDLINE | ID: mdl-27650955

ABSTRACT

The anterior pituitary gland is comprised of specialized cell-types that produce and secrete polypeptide hormones in response to hypothalamic input and feedback from target organs. These specialized cells arise from stem cells that express SOX2 and the pituitary transcription factor PROP1, which is necessary to establish the stem cell pool and promote an epithelial to mesenchymal-like transition, releasing progenitors from the niche. The adult anterior pituitary responds to physiological challenge by mobilizing the SOX2-expressing progenitor pool and producing additional hormone-producing cells. Knowledge of the role of signaling pathways and extracellular matrix components in these processes may lead to improvements in the efficiency of differentiation of embryonic stem cells or induced pluripotent stem cells into hormone producing cells in vitro. Advances in our basic understanding of pituitary stem cell regulation and differentiation may lead to improved diagnosis and treatment for patients with hypopituitarism.


Subject(s)
Homeodomain Proteins/metabolism , Pituitary Gland, Anterior/cytology , SOXB1 Transcription Factors/metabolism , Stem Cells/cytology , Animals , Cell Differentiation , Epithelial-Mesenchymal Transition , Extracellular Matrix/metabolism , Humans , Pituitary Gland, Anterior/metabolism , Signal Transduction , Stem Cells/metabolism
15.
BMC Dev Biol ; 16(1): 16, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27184910

ABSTRACT

BACKGROUND: The pituitary gland is a highly vascularized tissue that requires coordinated interactions between the neural ectoderm, oral ectoderm, and head mesenchyme during development for proper physiological function. The interactions between the neural ectoderm and oral ectoderm, especially the role of the pituitary organizer in shaping the pituitary precursor, Rathke's pouch, are well described. However, less is known about the role of head mesenchyme in pituitary organogenesis. The head mesenchyme is derived from definitive mesoderm and neural crest, but the relative contributions of these tissues to the mesenchyme adjacent to the pituitary are not known. RESULTS: We carried out lineage tracing experiments using two neural crest-specific mouse cre lines, Wnt1-cre and P0-cre, and determined that the head mesenchyme rostral to the pituitary gland is neural crest derived. To assess the role of the neural crest in pituitary development we ablated it, using Wnt1-cre to delete Ctnnb1 (ß-catenin), which is required for neural crest development. The Wnt1-cre is active in the neural ectoderm, principally in the mesencephalon, but also in the posterior diencephalon. Loss of ß-catenin in this domain causes a rostral shift in the ventral diencephalon, including the pituitary organizer, resulting in pituitary dysmorphology. The neural crest deficient embryos have abnormally dilated pituitary vasculature due to a loss of neural crest derived pericytes. CONCLUSIONS: ß-catenin in the Wnt1 expression domain, including the neural crest, plays a critical role in regulation of pituitary gland growth, development, and vascularization.


Subject(s)
Gene Expression Regulation, Developmental , Mesencephalon/metabolism , Neural Crest/metabolism , Organogenesis/genetics , Pituitary Gland/metabolism , beta Catenin/genetics , Animals , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Female , Immunohistochemistry , In Situ Hybridization , Male , Mesencephalon/embryology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Fluorescence , Myelin P0 Protein/genetics , Myelin P0 Protein/metabolism , Neural Crest/embryology , Pituitary Gland/embryology , Wnt1 Protein/genetics , Wnt1 Protein/metabolism , beta Catenin/metabolism
16.
PLoS One ; 11(3): e0150598, 2016.
Article in English | MEDLINE | ID: mdl-26930071

ABSTRACT

Deer mice, or Peromyscus maniculatus, are an emerging model system for use in biomedicine. P. maniculatus are similar in appearance to laboratory mice, Mus musculus, but are more closely related to hamsters than to Mus. The laboratory strains of Peromyscus have captured a high degree of the genetic variability observed in wild populations, and are more similar to the genetic variability observed in humans than are laboratory strains of Mus. The Peromyscus Genetic Stock Center at the University of South Carolina maintains several lines of Peromyscus harboring mutations that result in developmental defects. We present here a description of P. maniculatus development from gastrulation to late gestation to serve as a guide for researchers interested in pursuing developmental questions in Peromyscus.


Subject(s)
Embryo, Mammalian/embryology , Embryonic Development , Gastrulation , Peromyscus/embryology , Animals , Developmental Biology/methods , Eye/embryology , Female , Forelimb/embryology , Hindlimb/embryology , Humans , Male , Mice , Models, Animal , Nervous System/embryology , Time Factors
17.
Endocrinology ; 157(4): 1385-96, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26812162

ABSTRACT

Mutations in PROP1, the most common known cause of combined pituitary hormone deficiency in humans, can result in the progressive loss of all hormones of the pituitary anterior lobe. In mice, Prop1 mutations result in the failure to initiate transcription of Pou1f1 (also known as Pit1) and lack somatotropins, lactotropins, and thyrotropins. The basis for this species difference is unknown. We hypothesized that Prop1 is expressed in a progenitor cell that can develop into all anterior lobe cell types, and not just the somatotropes, thyrotropes, and lactotropes, which are collectively known as the PIT1 lineage. To test this idea, we produced a transgenic Prop1-cre mouse line and conducted lineage-tracing experiments of Prop1-expressing cells. The results reveal that all hormone-secreting cell types of both the anterior and intermediate lobes are descended from Prop1-expressing progenitors. The Prop1-cre mice also provide a valuable genetic reagent with a unique spatial and temporal expression for generating tissue-specific gene rearrangements early in pituitary gland development. We also determined that the minimal essential sequences for reliable Prop1 expression lie within 10 kilobases of the mouse gene and demonstrated that human PROP1 can substitute functionally for mouse Prop1. These studies enhance our understanding of the pathophysiology of disease in patients with PROP1 mutations.


Subject(s)
Homeodomain Proteins/metabolism , Pituitary Gland, Anterior/metabolism , Pituitary Gland/metabolism , Stem Cells/metabolism , Animals , Cell Lineage/genetics , Genetic Complementation Test , Homeodomain Proteins/genetics , Humans , Immunohistochemistry , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Mice, Transgenic , Microscopy, Fluorescence , Mutation , Pituitary Gland/cytology , Pituitary Gland/embryology , Pituitary Gland, Anterior/cytology , Pituitary Gland, Anterior/embryology
18.
Mol Endocrinol ; 29(6): 842-55, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25915183

ABSTRACT

Sine oculis-related homeobox 3 (SIX3) and SIX6, 2 closely related homeodomain transcription factors, are involved in development of the mammalian neuroendocrine system and mutations of Six6 adversely affect fertility in mice. We show that both small interfering RNA knockdown in gonadotrope cell lines and knockout of Six6 in both embryonic and adult male mice (Six6 knockout) support roles for SIX3 and SIX6 in transcriptional regulation in gonadotrope gene expression and that SIX3 and SIX6 can functionally compensate for each other. Six3 and Six6 expression patterns in gonadotrope cell lines reflect the timing of the expression of pituitary markers they regulate. Six3 is expressed in an immature gonadotrope cell line and represses transcription of the early lineage-specific pituitary genes, GnRH receptor (GnRHR) and the common α-subunit (Cga), whereas Six6 is expressed in a mature gonadotrope cell line and represses the specific ß-subunits of LH and FSH (LHb and FSHb) that are expressed later in development. We show that SIX6 repression requires interaction with transducin-like enhancer of split corepressor proteins and competition for DNA-binding sites with the transcriptional activator pituitary homeobox 1. Our studies also suggest that estradiol and circadian rhythm regulate pituitary expression of Six6 and Six3 in adult females but not in males. In summary, SIX3 and SIX6 play distinct but compensatory roles in regulating transcription of gonadotrope-specific genes as gonadotrope cells differentiate.


Subject(s)
Eye Proteins/metabolism , Gene Expression Regulation, Developmental , Gonadotrophs/metabolism , Homeodomain Proteins/metabolism , Nerve Tissue Proteins/metabolism , Trans-Activators/metabolism , Animals , COS Cells , Chlorocebus aethiops , Eye Proteins/genetics , Female , Gene Expression Regulation, Developmental/drug effects , Gene Knockdown Techniques , Gonadotrophs/drug effects , Homeodomain Proteins/genetics , Male , Nerve Tissue Proteins/genetics , Organ Specificity/drug effects , Organ Specificity/genetics , Paired Box Transcription Factors/metabolism , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Binding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Steroids/pharmacology , Trans-Activators/genetics , Transcription, Genetic/drug effects , Transcriptional Activation/drug effects , Transcriptional Activation/genetics , Homeobox Protein SIX3
19.
Curr Top Dev Biol ; 106: 1-47, 2013.
Article in English | MEDLINE | ID: mdl-24290346

ABSTRACT

Many aspects of pituitary development have become better understood in the past two decades. The signaling pathways regulating pituitary growth and shape have emerged, and the balancing interactions between the pathways are now appreciated. Markers for multipotent progenitor cells are being identified, and signature transcription factors have been discovered for most hormone-producing cell types. We now realize that pulsatile hormone secretion involves a 3D integration of cellular networks. About a dozen genes are known to cause pituitary hypoplasia when mutated due to their essential roles in pituitary development. Similarly, a few genes are known that predispose to familial endocrine neoplasia, and several genes mutated in sporadic pituitary adenomas are documented. In the next decade, we anticipate gleaning a deeper appreciation of these processes at the molecular level, insight into the development of the hypophyseal portal blood system, and evolution of better therapeutics for congenital and acquired hormone deficiencies and for common craniopharyngiomas and pituitary adenomas.


Subject(s)
Gene Expression Regulation, Developmental , Mutation , Pituitary Diseases/genetics , Pituitary Gland/metabolism , Animals , Humans , Models, Genetic , Pituitary Diseases/metabolism , Pituitary Diseases/physiopathology , Pituitary Gland/growth & development , Pituitary Hormones/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Stem Cells/cytology , Stem Cells/metabolism
20.
Genesis ; 51(11): 785-92, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23996951

ABSTRACT

Tissue-specific expression of cre recombinase is a well-established genetic tool to analyze gene function, and it is limited only by the efficiency and specificity of available cre mouse strains. Here, we report the generation of a transgenic line containing a cre cassette with codon usage optimized for mammalian cells (iCre) under the control of a mouse glycoprotein hormone α-subunit (αGSU) regulatory sequences in a bacterial artificial chromosome genomic clone. Initial analysis of this transgenic line, Tg(αGSU-iCre), with cre reporter strains reveals onset of cre activity in the differentiating cells of the developing anterior pituitary gland at embryonic day 12.5, with a pattern characteristic of endogenous αGSU. In adult mice, αGSU-iCre was active in the anterior lobe of the pituitary gland and in the cells that produce αGSU (gonadotropes and thyrotropes) with high penetrance. Little or no activity was observed in other tissues, including skeletal and cardiac muscle, brain, kidney, lungs, testis, ovary, and liver. This αGSU-iCre line is suitable for efficient, specific, and developmentally regulated deletion of floxed alleles in anterior pituitary gonadotropes and thyrotropes.


Subject(s)
Glycoprotein Hormones, alpha Subunit/genetics , Gonadotrophs/metabolism , Integrases/metabolism , Recombination, Genetic , Thyrotrophs/metabolism , Alleles , Animals , Chromosomes, Artificial, Bacterial , Cloning, Molecular , Embryo, Mammalian , Female , Genotype , Glycoprotein Hormones, alpha Subunit/metabolism , Integrases/genetics , Male , Mice , Mice, Transgenic , Organ Specificity , Regulatory Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...