Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 480(16): 1331-1363, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37642371

ABSTRACT

There are over 500 human kinases ranging from very well-studied to almost completely ignored. Kinases are tractable and implicated in many diseases, making them ideal targets for medicinal chemistry campaigns, but is it possible to discover a drug for each individual kinase? For every human kinase, we gathered data on their citation count, availability of chemical probes, approved and investigational drugs, PDB structures, and biochemical and cellular assays. Analysis of these factors highlights which kinase groups have a wealth of information available, and which groups still have room for progress. The data suggest a disproportionate focus on the more well characterized kinases while much of the kinome remains comparatively understudied. It is noteworthy that tool compounds for understudied kinases have already been developed, and there is still untapped potential for further development in this chemical space. Finally, this review discusses many of the different strategies employed to generate selectivity between kinases. Given the large volume of information available and the progress made over the past 20 years when it comes to drugging kinases, we believe it is possible to develop a tool compound for every human kinase. We hope this review will prove to be both a useful resource as well as inspire the discovery of a tool for every kinase.

2.
ACS Med Chem Lett ; 14(4): 432-441, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37077385

ABSTRACT

Naphthyridine-based inhibitors were synthesized to yield a potent and cell-active inhibitor of casein kinase 2 (CK2). Compound 2 selectively inhibits CK2α and CK2α' when profiled broadly, thereby making it an exquisitely selective chemical probe for CK2. A negative control that is structurally related but lacks a key hinge-binding nitrogen (7) was designed on the basis of structural studies. Compound 7 does not bind CK2α or CK2α' in cells and demonstrates excellent kinome-wide selectivity. Differential anticancer activity was observed when compound 2 was profiled alongside a structurally distinct CK2 chemical probe: SGC-CK2-1. This naphthyridine-based chemical probe (2) represents one of the best available small molecule tools with which to interrogate biology mediated by CK2.

3.
Chem Sci ; 11(27): 7204-7209, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-34123005

ABSTRACT

The ring-opening oxidative amination of methylenecyclopropanes (MCPs) with diazenes catalyzed by py3TiCl2(NR) complexes is reported. This reaction selectively generates branched α-methylene imines as opposed to linear α,ß-unsaturated imines, which are difficult to access via other methods. Products can be isolated as the imine or hydrolyzed to the corresponding ketone in good yields. Mechanistic investigation via density functional theory suggests that the regioselectivity of these products results from a Curtin-Hammett kinetic scenario, where reversible ß-carbon elimination of a spirocyclic [2 + 2] azatitanacyclobutene intermediate is followed by selectivity-determining ß-hydrogen elimination of the resulting metallacycle. Further functionalizations of these branched α-methylene imine products are explored, demonstrating their utility as building blocks.

4.
J Am Chem Soc ; 140(23): 7267-7281, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29763560

ABSTRACT

A combined computational and experimental study on the mechanism of Ti-catalyzed formal [2 + 2 + 1] pyrrole synthesis from alkynes and aryl diazenes is reported. This reaction proceeds through a formally TiII/TiIV redox catalytic cycle as determined by natural bond orbital (NBO) and intrinsic bond orbital (IBO) analysis. Kinetic analysis of the reaction of internal alkynes with azobenzene reveals a complex equilibrium involving Ti═NPh monomer/dimer equilibrium and Ti═NPh + alkyne [2 + 2] cycloaddition equilibrium along with azobenzene and pyridine inhibition equilibria prior to rate-determining second alkyne insertion. Computations support this kinetic analysis, provide insights into the structure of the active species in catalysis and the roles of solvent, and provide a new mechanism for regeneration of the Ti imido catalyst via disproportionation. Reductive elimination from a 6-membered azatitanacyclohexadiene species to generate pyrrole-bound TiII is surprisingly facile and occurs through a unique electrocyclic reductive elimination pathway similar to a Nazarov cyclization. The resulting TiII species are stabilized through backbonding into the π* of the pyrrole framework, although solvent effects also significantly stabilize free TiII species that are required for pyrrole loss and catalytic turnover. Further computational and kinetic analysis reveals that in complex reactions with unysmmetric alkynes the resulting pyrrole regioselectivity is driven primarily by steric effects for terminal alkynes and inductive effects for internal alkynes.


Subject(s)
Alkynes/chemistry , Azo Compounds/chemistry , Imines/chemistry , Pyrroles/chemical synthesis , Titanium/chemistry , Catalysis , Cyclization , Isomerism , Kinetics , Models, Chemical , Molecular Structure , Oxidation-Reduction , Quantum Theory , Solvents/chemistry
5.
Organometallics ; 37(23): 4439-4445, 2018.
Article in English | MEDLINE | ID: mdl-31802785

ABSTRACT

The development of several in situ generated catalyst systems for Ti-catalyzed oxidative nitrene transfer reactions is reported. The simplest and widely applicable catalyst system, TiCl4(THF)2/Zn0, can be set up on the benchtop under air. This system uses commercially available reagents and can be used as an entry point for TiII/TiIV multicomponent redox reactions for the synthesis of pyrroles, α,γ-unsaturated imines, α,ß-unsaturated imines, cyclopropylimines, and arenes.

6.
Dalton Trans ; 46(35): 11522-11528, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28795719

ABSTRACT

π-Acid ancillary ligands, reactants, or products can stabilize reactive low valent Ti intermediates through backbonding, and present opportunities for the development of vast new classes of Ti-catalyzed redox reactions with practical applications.

7.
Angew Chem Int Ed Engl ; 56(35): 10577-10581, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28697283

ABSTRACT

Hexakis(2,6-diisopropylphenylisocyanide)tantalum is the first isocyanide analogue of the highly unstable Ta(CO)6 and represents the only well-defined zerovalent tantalum complex to be prepared by conventional laboratory methods. Two prior examples of homoleptic Ta0 complexes are known, Ta(benzene)2 and Ta(dmpe)3 , dmpe=1,2-bis(dimethylphosphano)ethane, but these have only been accessed via ligand co-condensation with tantalum vapor in a sophisticated metal-atom reactor. Consistent with its 17-electron nature, Ta(CNDipp)6 undergoes facile one-electron oxidation, reduction, or disproportionation reactions. In this sense, it qualitatively resembles V(CO)6 , the only paramagnetic homoleptic metal carbonyl isolable under ambient conditions.

8.
Organometallics ; 36(7): 1383-1390, 2017 Apr 10.
Article in English | MEDLINE | ID: mdl-28690352

ABSTRACT

Low-valent TiII species have typically been synthesized by the reaction of TiIV halides with strong metal reductants. Herein we report that TiII species can be generated simply by reacting TiIV imido complexes with 2 equiv of alkyne, yielding a metallacycle that can reductively eliminate pyrrole while liberating TiII. In order to probe the generality of this process, TiII-catalyzed alkyne trimerization reactions were carried out with a diverse range of TiIV precatalysts.

9.
J Am Chem Soc ; 138(44): 14570-14573, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27790910

ABSTRACT

The inter- or intramolecular oxidative carboamination of alkynes catalyzed by [py2TiCl2NPh]2 is reported. These multicomponent reactions couple alkenes, alkynes and diazenes to form either α,ß-unsaturated imines or α-(iminomethyl)cyclopropanes via a TiII/TiIV redox cycle. Each of these products is formed from a common azatitanacyclohexene intermediate that undergoes either ß-H elimination or α,γ-coupling, wherein the selectivity is under substrate control.


Subject(s)
Alkenes/chemistry , Alkynes/chemistry , Titanium/chemistry , Catalysis , Imides , Molecular Structure , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...