Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Cells ; 12(16)2023 08 19.
Article in English | MEDLINE | ID: mdl-37626911

ABSTRACT

Duchenne muscular dystrophy (DMD) is one of the most devastating myopathies, where severe inflammation exacerbates disease progression. Previously, we demonstrated that adiponectin (ApN), a hormone with powerful pleiotropic effects, can efficiently improve the dystrophic phenotype. However, its practical therapeutic application is limited. In this study, we investigated ALY688, a small peptide ApN receptor agonist, as a potential novel treatment for DMD. Four-week-old mdx mice were subcutaneously treated for two months with ALY688 and then compared to untreated mdx and wild-type mice. In vivo and ex vivo tests were performed to assess muscle function and pathophysiology. Additionally, in vitro tests were conducted on human DMD myotubes. Our results showed that ALY688 significantly improved the physical performance of mice and exerted potent anti-inflammatory, anti-oxidative and anti-fibrotic actions on the dystrophic muscle. Additionally, ALY688 hampered myonecrosis, partly mediated by necroptosis, and enhanced the myogenic program. Some of these effects were also recapitulated in human DMD myotubes. ALY688's protective and beneficial properties were mainly mediated by the AMPK-PGC-1α axis, which led to suppression of NF-κß and TGF-ß. Our results demonstrate that an ApN mimic may be a promising and effective therapeutic prospect for a better management of DMD.


Subject(s)
Adiponectin , Receptors, Adiponectin , Humans , Animals , Mice , Mice, Inbred mdx , Muscle Fibers, Skeletal , Fibrosis
2.
J Cachexia Sarcopenia Muscle ; 14(1): 464-478, 2023 02.
Article in English | MEDLINE | ID: mdl-36513619

ABSTRACT

BACKGROUND: Obesity among older adults has increased tremendously. Obesity accelerates ageing and predisposes to age-related conditions and diseases, such as loss of endurance capacity, insulin resistance and features of the metabolic syndrome. Namely, ectopic lipids play a key role in the development of nonalcoholic fatty liver disease (NAFLD) and myosteatosis, two severe burdens of ageing and metabolic diseases. Adiponectin (ApN) is a hormone, mainly secreted by adipocytes, which exerts insulin-sensitizing and fat-burning properties in several tissues including the liver and the muscle. Its overexpression also increases lifespan in mice. In this study, we investigated whether an ApN receptor agonist, AdipoRon (AR), could slow muscle dysfunction, myosteatosis and degenerative muscle markers in middle-aged obese mice. The effects on myosteatosis were compared with those on NAFLD. METHODS: Three groups of mice were studied up to 62 weeks of age: One group received normal diet (ND), another, high-fat diet (HFD); and the last, HFD combined with AR given orally for almost 1 year. An additional group of young mice under an ND was used. Treadmill tests and micro-computed tomography (CT) were carried out in vivo. Histological, biochemical and molecular analyses were performed on tissues ex vivo. Bodipy staining was used to assess intramyocellular lipid (IMCL) and lipid droplet morphology. RESULTS: AR did not markedly alter diet-induced obesity. Yet, this treatment rescued exercise endurance in obese mice (up to 2.4-fold, P < 0.05), an event that preceded the improvement of insulin sensitivity. Dorsal muscles and liver densities, measured by CT, were reduced in obese mice (-42% and -109%, respectively, P < 0.0001), suggesting fatty infiltration. This reduction tended to be attenuated by AR. Accordingly, AR significantly mitigated steatosis and cellular ballooning at liver histology, thereby decreasing the NALFD activity score (-30%, P < 0.05). AR also strikingly reversed IMCL accumulation either due to ageing in oxidative fibres (types 1/2a, soleus) or to HFD in glycolytic ones (types 2x/2b, extensor digitorum longus) (-50% to -85%, P < 0.05 or less). Size of subsarcolemmal lipid droplets, known to be associated with adverse metabolic outcomes, was reduced as well. Alleviation of myosteatosis resulted from improved mitochondrial function and lipid oxidation. Meanwhile, AR halved aged-related accumulation of dysfunctional proteins identified as tubular aggregates and cylindrical spirals by electron microscopy (P < 0.05). CONCLUSIONS: Long-term AdipoRon treatment promotes 'healthy ageing' in obese middle-aged mice by enhancing endurance and protecting skeletal muscle and liver against the adverse metabolic and degenerative effects of ageing and caloric excess.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Mice , Mice, Obese , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , X-Ray Microtomography , Obesity/complications , Obesity/drug therapy , Muscle, Skeletal/pathology , Insulin Resistance/physiology , Lipids
3.
Front Immunol ; 13: 1049076, 2022.
Article in English | MEDLINE | ID: mdl-36569900

ABSTRACT

Background: Duchenne muscular dystrophy (DMD) is the most common inherited human myopathy. Typically, the secondary process involving severe inflammation and necrosis exacerbate disease progression. Previously, we reported that the NLRP3 inflammasome complex plays a crucial role in this disorder. Moreover, pyroptosis, a form of programmed necrotic cell death, is triggered by NLRP3 via gasdermin D (GSDMD). So far, pyroptosis has never been described either in healthy muscle or in dystrophic muscle. The aim of this study was to unravel the role of NLRP3 inflammasome in DMD and explore a potentially promising treatment with MCC950 that selectively inhibits NLRP3. Methods: Four-week-old mdx mice (n=6 per group) were orally treated for 2 months with MCC950 (mdx-T), a highly potent, specific, small-molecule inhibitor of NLRP3, and compared with untreated (mdx) and wild-type (WT) mice. In vivo functional tests were carried out to measure the global force and endurance of mice. Ex vivo biochemical and molecular analyses were performed to evaluate the pathophysiology of the skeletal muscle. Finally, in vitro tests were conducted on primary cultures of DMD human myotubes. Results: After MCC950 treatment, mdx mice exhibited a significant reduction of inflammation, macrophage infiltration and oxidative stress (-20 to -65%, P<0.05 vs untreated mdx). Mdx-T mice displayed considerably less myonecrosis (-54%, P<0.05 vs mdx) and fibrosis (-75%, P<0.01 vs mdx). Moreover, a more mature myofibre phenotype, characterized by larger-sized fibres and higher expression of mature myosin heavy chains 1 and 7 was observed. Mdx-T also exhibited enhanced force and resistance to fatigue (+20 to 60%, P<0.05 or less). These beneficial effects resulted from MCC950 inhibition of both active caspase-1 (-46%, P=0.075) and cleaved gasdermin D (N-GSDMD) (-42% in medium-sized-fibres, P<0.001). Finally, the anti-inflammatory action and the anti-pyroptotic effect of MCC950 were also recapitulated in DMD human myotubes. Conclusion: Specific inhibition of the NLRP3 inflammasome can significantly attenuate the dystrophic phenotype. A novel finding of this study is the overactivation of GSDMD, which is hampered by MCC950. This ultimately leads to less inflammation and pyroptosis and to a better muscle maturation and function. Targeting NLRP3 might lead to an effective therapeutic approach for a better management of DMD.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Animals , Mice , Muscular Dystrophy, Duchenne/drug therapy , Inflammasomes/metabolism , Mice, Inbred mdx , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Gasdermins , Muscle, Skeletal/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Inflammation/metabolism
4.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555721

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive disease caused by the loss of function of the protein dystrophin. This protein contributes to the stabilisation of striated cells during contraction, as it anchors the cytoskeleton with components of the extracellular matrix through the dystrophin-associated protein complex (DAPC). Moreover, absence of the functional protein affects the expression and function of proteins within the DAPC, leading to molecular events responsible for myofibre damage, muscle weakening, disability and, eventually, premature death. Presently, there is no cure for DMD, but different treatments help manage some of the symptoms. Advances in genetic and exon-skipping therapies are the most promising intervention, the safety and efficiency of which are tested in animal models. In addition to in vivo functional tests, ex vivo molecular evaluation aids assess to what extent the therapy has contributed to the regenerative process. In this regard, the later advances in microscopy and image acquisition systems and the current expansion of antibodies for immunohistological evaluation together with the development of different spectrum fluorescent dyes have made histology a crucial tool. Nevertheless, the complexity of the molecular events that take place in dystrophic muscles, together with the rise of a multitude of markers for each of the phases of the process, makes the histological assessment a challenging task. Therefore, here, we summarise and explain the rationale behind different histological techniques used in the literature to assess degeneration and regeneration in the field of dystrophinopathies, focusing especially on those related to DMD.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Muscular Dystrophy, Duchenne/genetics , Muscle, Skeletal/metabolism , Dystrophin/genetics , Dystrophin/metabolism , Disease Models, Animal
5.
J Vis Exp ; (184)2022 06 08.
Article in English | MEDLINE | ID: mdl-35758675

ABSTRACT

Skeletal muscle lipid infiltration, known as myosteatosis, increases with obesity and ageing. Myosteatosis has also recently been discovered as a negative prognostic factor for several other disorders such as cardiovascular disease and cancer. Excessive lipid infiltration decreases muscle mass and strength. It also results in lipotoxicity and insulin resistance depending on total intramyocellular lipid content, lipid droplet (LD) morphology, and subcellular distribution. Fiber type (oxidative vs glycolytic) is also important, since oxidative fibers have a greater capacity to utilize lipids. Because of their crucial implications in pathophysiology, in-depth studies on LD dynamics and function in a fiber type-specific manner are warranted. Herein, a complete protocol is presented for the quantification of intramyocellular lipid content and analysis of LD morphology and subcellular distribution in a fiber type-specific manner. To this end, serial muscle cryosections were stained with the fluorescent dye Bodipy and antibodies against myosin heavy chain isoforms. This protocol enables the simultaneous processing of different muscles, saving time and avoiding possible artifacts and, thanks to a personalized macro created in Fiji, the automatization of LD analysis is also possible.


Subject(s)
Insulin Resistance , Lipid Droplets , Humans , Lipid Droplets/chemistry , Lipids/analysis , Muscle, Skeletal/ultrastructure , Myosin Heavy Chains
6.
Cells ; 10(11)2021 11 04.
Article in English | MEDLINE | ID: mdl-34831246

ABSTRACT

Over the last decade, innate immune system receptors and sensors called inflammasomes have been identified to play key pathological roles in the development and progression of numerous diseases. Among them, the nucleotide-binding oligomerization domain (NOD-), leucine-rich repeat (LRR-) and pyrin domain-containing protein 3 (NLRP3) inflammasome is probably the best characterized. To date, NLRP3 has been extensively studied in the heart, where its effects and actions have been broadly documented in numerous cardiovascular diseases. However, little is still known about NLRP3 implications in muscle disorders affecting non-cardiac muscles. In this review, we summarize and present the current knowledge regarding the function of NLRP3 in diseased skeletal muscle, and discuss the potential therapeutic options targeting the NLRP3 inflammasome in muscle disorders.


Subject(s)
Inflammasomes/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/pathology , Animals , Humans , Models, Biological , Molecular Targeted Therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
7.
Invest Ophthalmol Vis Sci ; 58(12): 5105-5121, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28986596

ABSTRACT

Purpose: To analyze in a frontal-eyed mammal (cat) the postnatal development of palisade endings in extraocular muscles (EOMs) and to compare the spatiotemporal and quantitative patterns of palisade endings among individual rectus muscles. Methods: Cats of different ages ranging from birth to adult stage were studied. EOM whole-mount preparations were fluorescently labeled using six combinations of triple staining and analyzed in the confocal laser scanning microscope. Results: Palisade endings developed postnatally and passed in each rectus muscle through the same, three developmental steps but in a heterochronic sequence and to a different final density per muscle. Specifically, palisade ending development was first completed in the medial rectus and later in the inferior, lateral, and superior rectus. The highest density of palisade endings was observed in the medial rectus and the lowest in the lateral rectus whereas values for the inferior and superior rectus were in between. Palisade endings expressed high levels of growth associated protein 43 during development and were supplied by axons that established motor terminals. Conclusions: Cats open their eyes 7 to 10 days after birth and later develop a complex three-dimensional visuomotor climbing and jumping behavior depending on accurate binocular vision and fine tuning of the ocular movements. Our findings indicate that palisade ending development correlates with important landmarks in visuomotor behavior and provide support for our previous notion that palisade endings play an important role for convergence eye movements in frontal-eyed species.


Subject(s)
Motor Neurons/physiology , Nerve Endings/physiology , Nerve Fibers/physiology , Oculomotor Muscles/innervation , Animals , Biomarkers/metabolism , Cats , Eye Movements/physiology , Female , Fluorescent Antibody Technique, Indirect , Male , Muscle Development , Vision, Binocular/physiology
8.
Int J Mol Sci ; 17(12)2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27916956

ABSTRACT

Neurotrophins play a principal role in neuronal survival and differentiation during development, but also in the maintenance of appropriate adult neuronal circuits and phenotypes. In the oculomotor system, we have demonstrated that neurotrophins are key regulators of developing and adult neuronal properties, but with peculiarities depending on each neurotrophin. For instance, the administration of NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor) or NT-3 (neurotrophin-3) protects neonatal extraocular motoneurons from cell death after axotomy, but only NGF and BDNF prevent the downregulation in ChAT (choline acetyltransferase). In the adult, in vivo recordings of axotomized extraocular motoneurons have demonstrated that the delivery of NGF, BDNF or NT-3 recovers different components of the firing discharge activity of these cells, with some particularities in the case of NGF. All neurotrophins have also synaptotrophic activity, although to different degrees. Accordingly, neurotrophins can restore the axotomy-induced alterations acting selectively on different properties of the motoneuron. In this review, we summarize these evidences and discuss them in the context of other motor systems.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Motor Neurons/metabolism , Nerve Growth Factor/metabolism , Nerve Growth Factors/metabolism , Animals , Axotomy , Brain-Derived Neurotrophic Factor/pharmacology , Cell Death/drug effects , Choline O-Acetyltransferase/biosynthesis , Choline O-Acetyltransferase/genetics , Gene Expression Regulation, Developmental/drug effects , Humans , Motor Neurons/drug effects , Nerve Growth Factor/pharmacology , Nerve Growth Factors/pharmacology , Neurotrophin 3
9.
Invest Ophthalmol Vis Sci ; 57(2): 320-31, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26830369

ABSTRACT

PURPOSE: To test whether palisade endings are a general feature of mammalian extraocular muscles (EOMs). METHODS: Thirteen species, some frontal-eyed (human, monkey, cat, and ferret), and others lateral-eyed (pig, sheep, calf, horse, rabbit, rat, mouse, gerbil, and guinea pig) were analyzed. Palisade endings were labeled by using different combinations of immunofluorescence techniques. Three-dimensional reconstructions of immunolabeled palisade endings were done. RESULTS: In all frontal-eyed species, palisade endings were a consistent feature in the rectus EOMs. Their total number was high and they exhibited an EOM-specific distribution. In particular, the number of palisade endings in the medial recti was significantly higher than in the other rectus muscles. In the lateral-eyed animals, palisade endings were infrequent and, when present, their total number was rather low. They were only found in ungulates (sheep, calf, pig, and horse) and in rabbit. In rodents (rat, guinea pig, mouse, and gerbil) palisade endings were found infrequently (e.g., rat) or were completely absent. Palisade endings in frontal-eyed species and in some lateral-eyed species (pig, sheep, calf, and horse) had a uniform morphology. They generally lacked α-bungarotoxin staining, with a few exceptions in primates. Palisade endings in other lateral-eyed species (rabbit and rat) exhibited a simplified morphology and bound α-bungarotoxin. CONCLUSIONS: Palisade endings are not a universal feature of mammalian EOMs. So, if they are proprioceptors, not all species require them. Because in frontal-eyed species, the medial rectus muscle has the highest number of palisade endings, they likely play a special role in convergence.


Subject(s)
Functional Laterality/physiology , Motor Neurons/physiology , Nerve Endings/physiology , Ocular Physiological Phenomena , Oculomotor Muscles/innervation , Sensory Receptor Cells/metabolism , Animals , Bungarotoxins/metabolism , Cats , Cattle , Choline O-Acetyltransferase/metabolism , Ferrets , Fluorescent Antibody Technique, Indirect , Gerbillinae , Guinea Pigs , Horses , Humans , Macaca , Mice , Microscopy, Confocal , Neurofilament Proteins/metabolism , Proprioception/physiology , Rabbits , Rats , Sheep , Swine
10.
J Neurosci ; 34(20): 7007-17, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24828653

ABSTRACT

Transplants of neural progenitor cells (NPCs) into the injured CNS have been proposed as a powerful tool for brain repair, but, to date, few studies on the physiological response of host neurons have been reported. Therefore, we explored the effects of NPC implants on the discharge characteristics and synaptology of axotomized abducens internuclear neurons, which mediate gaze conjugacy for horizontal eye movements. NPCs were isolated from the subventricular zone of neonatal cats and implanted at the site of transection in the medial longitudinal fascicle of adult cats. Abducens internuclear neurons of host animals showed a complete restoration of axotomy-induced alterations in eye position sensitivity, but eye velocity sensitivity was only partially regained. Analysis of the inhibitory and excitatory components of the discharge revealed a normal re-establishment of inhibitory inputs, but only partial re-establishment of excitatory inputs. Moreover, their inhibitory terminal coverage was similar to that in controls, indicating that there was ultimately no loss of inhibitory synaptic inputs. Somatic coverage by synaptophysin-positive contacts, however, showed intermediate values between control animals and animals that had undergone axotomy, likely due to partial loss of excitatory inputs. We also demonstrated that severed axons synaptically contacted NPCs, most of which were VEGF immunopositive, and that abducens internuclear neurons expressed the VEGF receptor Flk1. Together, our results suggest that VEGF neurotrophic support might underlie the increased inhibitory-to-excitatory balance observed in the postimplant cells. The noteworthy improvement of firing properties of injured neurons following NPC implants indicates that these cells might provide a promising therapeutic strategy after neuronal lesions.


Subject(s)
Abducens Nerve/physiology , Action Potentials/physiology , Eye Movements/physiology , Neural Stem Cells/transplantation , Neurons/physiology , Synapses/physiology , Animals , Axotomy , Cats , Neuronal Plasticity/physiology
11.
J Neurosci ; 33(7): 2784-93, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23407938

ABSTRACT

Palisade endings are nerve specializations found in the extraocular muscles (EOMs) of mammals, including primates. They have long been postulated to be proprioceptors. It was recently demonstrated that palisade endings are cholinergic and that in monkeys they originate from the EOM motor nuclei. Nevertheless, there is considerable difference of opinion concerning the nature of palisade ending function. Palisade endings in EOMs were examined in cats to test whether they display motor or sensory characteristics. We injected an anterograde tracer into the oculomotor or abducens nuclei and combined tracer visualization with immunohistochemistry and α-bungarotoxin staining. Employing immunohistochemistry, we performed molecular analyses of palisade endings and trigeminal ganglia to determine whether cat palisade endings are a cholinergic trigeminal projection. We confirmed that palisade endings are cholinergic and showed, for the first time, that they, like extraocular motoneurons, are also immunoreactive for calcitonin gene-related peptide. Following tracer injection into the EOM nuclei, we observed tracer-positive palisade endings that exhibited choline acetyl transferase immunoreactivity. The tracer-positive nerve fibers supplying palisade endings also established motor terminals along the muscle fibers, as demonstrated by α-bungarotoxin. Neither the trigeminal ganglion nor the ophthalmic branch of the trigeminal nerve contained cholinergic elements. This study confirms that palisade endings originate in the EOM motor nuclei and further indicates that they are extensions of the axons supplying the muscle fiber related to the palisade. The present work excludes the possibility that they receive cholinergic trigeminal projections. These findings call into doubt the proposed proprioceptive function of palisade endings.


Subject(s)
Axons/physiology , Oculomotor Muscles/physiology , Abducens Nerve/cytology , Abducens Nerve/physiology , Animals , Bungarotoxins , Calcitonin Gene-Related Peptide/metabolism , Cats , Choline O-Acetyltransferase/metabolism , Fluorescent Antibody Technique , Immunohistochemistry , Motor Neurons/physiology , Muscle Fibers, Skeletal/physiology , Nerve Endings/physiology , Oculomotor Muscles/innervation , Parasympathetic Nervous System/physiology , Proprioception/physiology , Trigeminal Nerve/cytology
12.
J Neurosci ; 31(6): 2271-9, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21307263

ABSTRACT

Extraocular muscle tension associated with spontaneous eye movements has a pulse-slide-step profile similar to that of motoneuron firing rate. Existing models only relate motoneuron firing to eye position, velocity and acceleration. We measured and quantitatively compared lateral rectus muscle force and eye position with the firing of abducens motoneurons in the cat to determine fundamental encoding correlations. During fixations (step), muscle force increased exponentially with eccentric eye position, consistent with a model of estimate ensemble motor innervation based on neuronal sensitivities and recruitment order. Moreover, firing rate in all motoneurons tested was better related to eye position than to muscle tension during fixations. In contrast, during the postsaccadic slide phase, the time constant of firing rate decay was closely related to that of muscle force decay, suggesting that all motoneurons encode muscle tension as well. Discharge characteristics of abducens motoneurons formed overlapping clusters of phasic and tonic motoneurons, thus, tonic units recruited earlier and had a larger slide signal. We conclude that the slide signal is a discharge characteristic of the motoneuron that controls muscle tension during the postsaccadic phase and that motoneurons are specialized for both tension and position-related properties. The organization of signal content in the pool of abducens motoneurons from the very phasic to the very tonic units is possibly a result of the differential trophic background received from distinct types of muscle fibers.


Subject(s)
Eye Movements/physiology , Motor Neurons/physiology , Muscle Tonus/physiology , Oculomotor Muscles/cytology , Oculomotor Muscles/physiology , Abducens Nerve/physiology , Action Potentials/physiology , Animals , Biomechanical Phenomena , Biophysics , Cats , Cluster Analysis , Electric Stimulation/methods , Electromyography/methods , Female , Oculomotor Muscles/innervation , Recruitment, Neurophysiological
13.
J Neurosci ; 30(24): 8308-19, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20554882

ABSTRACT

Target-derived neurotrophins exert powerful synaptotrophic actions in the adult brain and are involved in the regulation of different forms of synaptic plasticity. Target disconnection produces a profound synaptic stripping due to the lack of trophic support. Consequently, target reinnervation leads to synaptic remodeling and restoration of cellular functions. Extraocular motoneurons are unique in that they normally express the TrkA neurotrophin receptor in the adult, a feature not seen in other cranial or spinal motoneurons, except after lesions such as axotomy or in neurodegenerative diseases like amyotrophic lateral sclerosis. We investigated the effects of nerve growth factor (NGF) by retrogradely delivering this neurotrophin to abducens motoneurons of adult cats. Axotomy reduced the density of somatic boutons and the overall tonic and phasic firing modulation. Treatment with NGF restored synaptic inputs and firing modulation in axotomized motoneurons. When K252a, a selective inhibitor of tyrosine kinase activity, was applied to specifically test TrkA effects, the NGF-mediated restoration of synapses and firing-related parameters was abolished. Discharge variability and recruitment threshold were, however, increased by NGF compared with control or axotomized motoneurons. Interestingly, these parameters returned to normal following application of REX, an antibody raised against neurotrophin receptor p75 (p75(NTR)). In conclusion, NGF, acting retrogradely through TrkA receptors, supports afferent boutons and regulates the burst and tonic signals correlated with eye movements. On the other hand, p75(NTR) activation regulates recruitment threshold, which impacts on firing regularity. To our knowledge, this is the first report showing powerful synaptotrophic effects of NGF on motoneurons in vivo.


Subject(s)
Action Potentials/drug effects , Motor Neurons/drug effects , Nerve Growth Factor/pharmacology , Synapses/physiology , Abducens Nerve/physiology , Action Potentials/physiology , Analysis of Variance , Animals , Axotomy/methods , Brain Stem/cytology , Carbazoles/pharmacology , Cats , Choline O-Acetyltransferase/metabolism , Drug Interactions , Enzyme Inhibitors/pharmacology , Eye Movements/physiology , Female , Functional Laterality , Gene Expression Regulation/drug effects , Gene Products, rex/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Indole Alkaloids/pharmacology , Motor Neurons/metabolism , Receptor, Nerve Growth Factor/metabolism , Receptor, trkA/metabolism , Recruitment, Neurophysiological/drug effects , Recruitment, Neurophysiological/physiology , Synapses/drug effects , Synaptophysin/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
14.
J Neurosci ; 29(2): 575-87, 2009 Jan 14.
Article in English | MEDLINE | ID: mdl-19144857

ABSTRACT

Neurotrophins, as target-derived factors, are essential for neuronal survival during development, but during adulthood, their scope of actions widens to become also mediators of synaptic and morphological plasticity. Target disconnection by axotomy produces an initial synaptic stripping ensued by synaptic rearrangement upon target reinnervation. Using abducens motoneurons of the oculomotor system as a model for axotomy, we report that trophic support by brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) or a mixture of both, delivered to the stump of severed axons, results in either the prevention of synaptic stripping when administered immediately after lesion or in a promotion of reinnervation of afferents to abducens motoneurons once synaptic stripping had occurred, in concert with the recovery of synaptic potentials evoked from the vestibular nerve. Synaptotrophic effects, however, were larger when both neurotrophins were applied together. The axotomy-induced reduction in firing sensitivities related to eye movements were also restored to normal values when BDNF and NT-3 were administered, but discharge characteristics recovered in a complementary manner when only one neurotrophin was used. This is the first report to show selective retrograde trophic dependence of circuit-driven firing properties in vivo indicating that NT-3 restored the phasic firing, whereas BDNF supported the tonic firing of motoneurons during eye movement performance. Therefore, our data report a link between the synaptotrophic actions of neurotrophins, retrogradely delivered, and the alterations of neuronal firing patterns during motor behaviors. These trophic actions could be responsible, in part, for synaptic rearrangements that alter circuit stability and synaptic balance during plastic events of the brain.


Subject(s)
Action Potentials/drug effects , Brain-Derived Neurotrophic Factor/pharmacology , Motor Neurons/drug effects , Neurotrophin 3/pharmacology , Synaptic Transmission/drug effects , Analysis of Variance , Animals , Axotomy/methods , Carbazoles/pharmacology , Cats , Choline O-Acetyltransferase/metabolism , Drug Interactions , Electric Stimulation/methods , Enzyme Inhibitors/pharmacology , Eye Movements/drug effects , Glial Fibrillary Acidic Protein/metabolism , Indole Alkaloids/pharmacology , Motor Neurons/metabolism , Nerve Regeneration/drug effects , Pons/cytology , Synaptic Potentials/drug effects , Synaptophysin/metabolism , Time Factors , Vesicular Glutamate Transport Proteins/metabolism
15.
J Neurosci Methods ; 167(2): 302-9, 2008 Jan 30.
Article in English | MEDLINE | ID: mdl-17935791

ABSTRACT

We describe the use of an implantable device for peripheral nerves that allows chronic simultaneous delivery of small volumes of solution, recording of both field and multiunit potentials, and electrical stimulation. This custom-made multifunctional device was attached to the cut end of the abducens (VIth) nerve for stimulation, recording and injection purposes. Our device consists of a polyethylene chamber with two electrodes that can be used for stimulation and recording and two Teflon tubes that serve as inlet and outlet for administering chemicals to the nerve fitted inside. Since the device is implanted in a retro-orbital position, we herein will refer to it as an intraorbitary device (IOD). The applicability of the IOD is demonstrated with an electrophysiological and anatomical account of the properties of the abducens nerve. Furthermore, it is shown that certain neuronal discharge properties can be inferred from the nerve recordings. The IOD can also be efficiently used for the delivery of small volume of pharmacological substances or conventional retrograde markers.


Subject(s)
Abducens Nerve Injury/physiopathology , Drug Delivery Systems/instrumentation , Electric Stimulation/instrumentation , Electric Stimulation/methods , Abducens Nerve Injury/pathology , Action Potentials/drug effects , Action Potentials/physiology , Action Potentials/radiation effects , Animals , Cats , Dose-Response Relationship, Radiation , Fluorescent Dyes/administration & dosage , Motor Neurons/drug effects , Motor Neurons/radiation effects , Prostheses and Implants
16.
J Neurophysiol ; 97(2): 1114-26, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17093114

ABSTRACT

Chronic motor learning in the vestibuloocular reflex (VOR) results in changes in the gain of this reflex and in other eye movements intimately associated with VOR behavior, e.g., the velocity storage generated by optokinetic stimulation (OKN velocity storage). The aim of the present study was to identify the plastic sites responsible for the change in OKN velocity storage after chronic VOR motor learning. We studied the neuronal responses of vertical eye movement flocculus target neurons (FTNs) during the optokinetic after-nystagmus (OKAN) phase of the optokinetic response (OKR) before and after VOR motor learning. Our findings can be summarized as follows. 1) Chronic VOR motor learning changes the horizontal OKN velocity storage in parallel with changes in VOR gain, whereas the vertical OKN velocity storage is more complex, increasing with VOR gain increases, but not changing following VOR gain decreases. 2) FTNs contain an OKAN signal having opposite directional preferences after chronic high versus low gain learning, suggesting a change in the OKN velocity storage representation of FTNs. 3) Changes in the eye-velocity sensitivity of FTNs during OKAN are correlated with changes in the brain stem head-velocity sensitivity of the same neurons. And 4) these changes in eye-velocity sensitivity of FTNs during OKAN support the new behavior after high gain but not low gain learning. Thus we hypothesize that the changes observed in the OKN velocity storage behavior after chronic learning result from changes in brain stem pathways carrying head velocity and OKN velocity storage information, and that a parallel pathway to vertical FTNs changes its OKN velocity storage representation following low, but not high, gain VOR motor learning.


Subject(s)
Learning/physiology , Neurons/physiology , Reflex, Vestibulo-Ocular/physiology , Reflex/physiology , Adaptation, Physiological , Animals , Electrophysiology , Eye Movements/physiology , Microelectrodes , Neuronal Plasticity/physiology , Nystagmus, Optokinetic/physiology , Photic Stimulation , Physical Stimulation , Saimiri , Visual Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...