Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Med Sci Sports Exerc ; 56(3): 411-417, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37796166

ABSTRACT

PURPOSE: Less physical activity has been associated with systemic biomarkers of cartilage breakdown after anterior cruciate ligament reconstruction (ACLR). However, previous research lacks analysis of deleterious cartilage compositional changes and objective physical activity after ACLR. The purpose of this study was to determine the association between physical activity quantified via accelerometer-based measures of daily steps and time in moderate-to-vigorous physical activity (MVPA), and T1rho magnetic resonance imaging (MRI) of the femoral articular cartilage, a marker of proteoglycan density in individuals with ACLR. METHODS: Daily steps and MVPA were assessed over 7 d using an accelerometer worn on the hip in 26 individuals between 6 and 12 months after primary unilateral ACLR. Resting T1rho MRI was collected bilaterally, and T1rho MRI interlimb ratios (ILR: ACLR limb/contralateral limb) were calculated for lateral and medial femoral condyle regions of interest. We conducted univariate linear regression analyses to determine associations between T1rho MRI ILRs and daily steps and MVPA with and without controlling for sex. RESULTS: Greater T1rho MRI ILR of the central lateral femoral condyle, indicative of less proteoglycan density in the ACLR limb, was associated with greater time in MVPA ( R2 = 0.178, P = 0.032). Sex-adjusted models showed significant interaction terms between daily steps and sex in the anterior ( P = 0.025), central ( P = 0.002), and posterior ( P = 0.002) medial femoral condyle. CONCLUSIONS: Lesser physical activity may be a risk factor for maintaining cartilage health after ACLR; additionally, the relationship between physical activity and cartilage health may be different between males and females.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Cartilage, Articular , Male , Female , Humans , Anterior Cruciate Ligament Injuries/diagnostic imaging , Anterior Cruciate Ligament Injuries/surgery , Knee Joint , Cartilage, Articular/diagnostic imaging , Femur , Anterior Cruciate Ligament Reconstruction/methods , Magnetic Resonance Imaging/methods , Proteoglycans
2.
Disabil Rehabil ; 46(7): 1432-1437, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37073780

ABSTRACT

PURPOSE: People with lower-limb loss participate in less physical activity than able-bodied individuals, which increases the mortality risk and incidence of metabolic syndromes. This study evaluated the effect of lower-limb prosthesis osseointegration on physical activity, including daily steps and stepping cadence. METHODS: Free-living walking activity was assessed from 14 patients scheduled to undergo prosthesis osseointegration at two time points (within 2 weeks prior to osseointegration surgery and 12-months following). Daily step count, stepping time, number of walking bouts, average step cadence per bout, maximum step cadence per bout, and time spent in bands of step cadence were compared before and after osseointegration. RESULTS: Twelve months after prosthesis osseointegration, participants increased daily steps, daily stepping time, average step cadence, and maximum cadence per walking bout compared to pre-osseointegration. CONCLUSIONS: Participants engaged in more daily steps, higher stepping cadence, and longer bouts at higher cadence one year following osseointegration compared to when using a socket prosthesis. As a novel intervention that is becoming more common, it is important to understand walking activity outcomes as these are critical for long-term health.


People with lower-limb loss participate in less physical activity than able-bodied individuals, which increases the mortality risk and incidence of metabolic syndromes.Daily step count, walking bouts, and step cadence during free-living walking activity are promising measures to capture physical functional performance in patients with lower-limb amputation.This study shows that patients with osseointegrated prostheses increase their stepping activity, including daily steps, number of bouts, and stepping cadence compared to when using a socket prosthesis, which has positive implications on overall patient health.As a novel intervention that is becoming more common, it is important for clinicians, patients, and researchers to understand expectations for walking activity outcomes as a critical factor in long-term patient health after prosthesis osseointegration.


Subject(s)
Artificial Limbs , Humans , Osseointegration , Prosthesis Implantation , Amputation, Surgical , Walking
3.
PM R ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37819260

ABSTRACT

BACKGROUND: Individuals with end-stage knee osteoarthritis (OA) walk at a lower intensity (ie, slower step cadence) contributing to worse physical function. Previous literature reports daily step counts and sedentary time, with little information regarding stepping bouts or cadence. Determining relationships between daily higher stepping cadence duration and clinical outcomes can move the field toward optimal daily stepping prescription. OBJECTIVE: To quantify daily physical activity patterns of individuals with end-stage knee OA and determine the contribution of high stepping cadence to explain functional capacity variability. DESIGN: Cross-sectional analysis. SETTING: Veterans Administration medical center. PARTICIPANTS: U.S. military veterans (n = 104; age: 67.1 years [7.2]; mean [SD]; male [89.3%]) with end-stage knee OA were enrolled. INTERVENTION: Not applicable. MAIN OUTCOME MEASURE: Functional capacity (6-Minute Walk Test [6MWT]). Physical activity (activPAL wearable sensor; cadence and time sitting, standing, and stepping), pain (Western Ontario and McMaster Universities Osteoarthritis Index-pain subscale) sociodemographic variables, and comorbidities (body mass index and Functional Comorbidity Index) are the main explanatory variables. RESULTS: Participants' wake time was mainly sitting (11.0 h/day) in ≥60-minute bouts (29.7% ± 12.7 of sitting time). Standing (3.4 hours/day) and stepping (1.4 h/day) primarily occurred in 0-5 minute bouts (standing: 87.7% ± 14.4 of standing time, stepping: 98.7% ± 12.7 of stepping time) and stepping cadence was predominantly incidental (1-19 spm; 52.9% ± 9.6 of total stepping time). Backward elimination model results indicated shorter medium-to-brisk cadence bout duration, older age, and higher pain significantly explained shorter 6MWT distance (Adj R2 =0.24, p < .01). CONCLUSIONS: Individuals with knee OA spend most of their waking hours sitting, while standing and stepping occurs in short bouts at very low stepping cadence. Decreased time in high stepping cadence is associated with lower functional capacity. Future studies should explore if increasing the daily time spent in higher step cadence can improve functional capacity in this population.

4.
Clin Biomech (Bristol, Avon) ; 104: 105948, 2023 04.
Article in English | MEDLINE | ID: mdl-37043833

ABSTRACT

BACKGROUND: Dissatisfaction with socket prostheses has led to the development of bone-anchored prostheses through osseointegration for people with transfemoral amputation, eliminating the need for a prosthetic socket. Gait deviations of transfemoral prosthesis users may be linked to increased risk of osteoarthritis, and it remains unknown if gait biomechanics change following osseointegration. The purpose of this case series was to evaluate the longitudinal changes in joint kinetics one year post-osseointegration in patients with transfemoral amputation during walking. METHODS: Knee, hip, and trunk internal moments were evaluated in the prosthetic and intact limbs during walking at a self-selected speed in four participants pre- and one-year post-osseointegration. Longitudinal changes were quantified using the percent change (%∆) in peak joint moments between the two time points and Cohen's d (d) effect size was used to determine the magnitude of effect on joint moments during walking one year following osseointegration. FINDINGS: Participants demonstrated increased peak knee extension moment (224 ± 308%∆, d = -1.31) in the prosthetic limb, while demonstrating reduced peak knee extension moment (-43 ± 34%∆, d = 1.82) in the intact limb post-osseointegration. Participants demonstrated bilateral reduction of peak hip extension moment (prosthetic: -22 ± 37%∆, d = 0.86; intact: -29 ± 10%∆, d = 1.27) and bilateral increase of peak hip abduction moment (prosthetic: 45 ± 40%∆, d = 1.20; intact: 23 ± 44%∆, d = 0.74) post-osseointegration. Participants demonstrated reduced peak trunk moments on both the prosthetic (extension: -31 ± 16%∆, d = 1.51; lateral flexion: -21 ± 20%∆, d = 0.63) and intact side (extension: -7 ± 22%∆, d = 0.38; lateral flexion: -22 ± 18%∆, d = 1.12) post-osseointegration. INTERPRETATION: This case series suggests improved gait symmetry in individuals with transfemoral amputation one year following osseointegration, justifying future investigation.


Subject(s)
Amputees , Artificial Limbs , Humans , Osseointegration , Amputation, Surgical , Knee Joint/surgery , Knee , Gait , Walking , Biomechanical Phenomena , Lower Extremity
5.
Med Sci Sports Exerc ; 55(8): 1499-1506, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36940200

ABSTRACT

INTRODUCTION: Aberrant gait variability has been observed after anterior cruciate ligament reconstruction (ACLR), yet it remains unknown if gait variability is associated with early changes in cartilage composition linked to osteoarthritis development. Our purpose was to determine the association between femoral articular cartilage T1ρ magnetic resonance imaging relaxation times and gait variability. METHODS: T1ρ magnetic resonance imaging and gait kinematics were collected in 22 ACLR participants (13 women; 21 ± 4 yr old; 7.52 ± 1.43 months post-ACLR). Femoral articular cartilage from the ACLR and uninjured limbs were segmented into anterior, central, and posterior regions from the weight-bearing portions of the medial and lateral condyles. Mean T1ρ relaxation times were extracted from each region and interlimb ratios (ILR) were calculated (i.e., ACLR/uninjured limb). Greater T1ρ ILR values were interpreted as less proteoglycan density (worse cartilage composition) in the injured limb compared with the uninjured limb. Knee kinematics were collected at a self-selected comfortable walking speed on a treadmill with an eight-camera three-dimensional motion capture system. Frontal and sagittal plane kinematics were extracted, and sample entropy was used to calculate kinematic variability structure (KV structure ). Pearson's product-moment correlations were conducted to determine the associations between T1ρ and KV structure variables. RESULTS: Lesser frontal plane KV structure was associated with greater mean T1ρ ILR in the anterior lateral ( r = - 0.44, P = 0.04) and anterior medial condyles ( r = - 0.47, P = 0 .03). Lesser sagittal plane KV structure was associated with greater mean T1ρ ILR in the anterior lateral condyle ( r = - 0.47, P = 0.03). CONCLUSIONS: The association between less KV structure and worse femoral articular cartilage proteoglycan density suggests a link between less variable knee kinematics and deleterious changes joint tissue changes. The findings suggest that less knee kinematic variability structure is a mechanism linking aberrant gait to early osteoarthritis development.


Subject(s)
Anterior Cruciate Ligament Injuries , Cartilage, Articular , Osteoarthritis, Knee , Humans , Female , Anterior Cruciate Ligament Injuries/surgery , Gait , Knee Joint , Cartilage, Articular/chemistry , Osteoarthritis, Knee/pathology , Magnetic Resonance Imaging/methods , Proteoglycans/analysis , Biomechanical Phenomena
6.
Prosthet Orthot Int ; 47(4): 343-349, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36701203

ABSTRACT

BACKGROUND: People with lower-limb amputation (LLA) are routinely prescribed a socket prosthesis; however, many socket prosthesis users experience severe complications with the fit of their prosthesis including residual limb wounds and pain. Osseointegration is a procedure that creates a direct connection between the bone and prosthetic limb through a bone-anchored prosthesis, eliminating the need for a socket interface. It is offered as a secondary procedure to people with LLA who experience significant complications with socket prostheses. OBJECTIVES: To evaluate change in disability and function 1 year postosseointegration compared with preosseointegration in people with LLA. STUDY DESIGN: Single group, pretest, and post-test. METHODS: Twelve participants (9 transfemoral and 3 transtibial amputations, age: 44 ± 10 years, 7 female participants, 14 ± 12 years since amputation) with unilateral LLA underwent osseointegration with press-fit implants. Disability was measured with the World Health Organization Disability Assessment Schedule 2.0, and function was measured with both Prosthetic Limb Users Mobility Survey and the Activities-Specific Balance Confidence Scale. Questionnaires were administered preosseointegration and 1 year postosseointegration. Paired t tests assessed change in outcomes between time points. RESULTS: Postosseointegration, participants demonstrated reduced disability measured with World Health Organization Disability Assessment Schedule 2.0 (%Δ = -52.6, p = 0.01), improved mobility measured with Prosthetic Limb Users Mobility Survey (%Δ = 21.8, P < 0.01), and improved balance confidence measured with the Activities-Specific Balance Confidence Scale (%Δ = 28.4, P < 0.01). CONCLUSIONS: Participants report less disability and greater function in their prosthesis postosseointegration. Osseointegration is a novel procedure for people experiencing complications with their socket prosthesis, and this study is the first to show improvements in disability postosseointegration.


Subject(s)
Artificial Limbs , Humans , Female , Adult , Middle Aged , Osseointegration , Prosthesis Implantation/methods , Amputation, Surgical , Lower Extremity/surgery , Prosthesis Design
7.
J Athl Train ; 58(6): 542-553, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-35119477

ABSTRACT

CONTEXT: Individuals who undergo anterior cruciate ligament reconstruction (ACLR) are at higher risk of posttraumatic osteoarthritis. Altered joint tissue loading caused by aberrant gait biomechanics leads to deleterious changes in joint health linked to the onset of posttraumatic osteoarthritis. Knee braces have been used to modify joint tissue loading in individuals with joint injury, yet the effects of walking with a brace after ACLR on biomechanical, biochemical, and structural cartilage outcomes are unknown. OBJECTIVE: To compare biomechanical, biochemical, and structural outcomes between braced and nonbraced walking in individuals with ACLR. DESIGN: Crossover study. SETTING: Research laboratory. PATIENTS OR OTHER PARTICIPANTS: A total of 34 individuals with unilateral ACLR (18 females, 16 males; time since ACLR = 50.1 ± 36.8 months). INTERVENTION(S): Gait biomechanics were assessed during braced and unbraced conditions on separate days. MAIN OUTCOME MEASURE(S): Vertical ground reaction force, knee-flexion angle, and internal knee-extension moment waveforms were evaluated throughout the stance phase and compared between conditions. Percentage changes in serum cartilage oligomeric matrix protein (%ΔCOMP) and femoral cartilage cross-sectional area (%ΔCSA) measured via ultrasound were calculated after a 3000-step walking protocol. RESULTS: Braced walking increased the knee-flexion angle (largest difference = 3.56°; Cohen d effect size = 1.72) and knee-extension moment (largest difference = -0.48% body weight × height; Cohen d effect size = -1.14) compared with nonbraced walking but did not influence vertical ground reaction force. Whereas no difference (P = .20) in %ΔCOMP existed between the braced and nonbraced conditions in the entire cohort (n = 30 with complete blood data), a larger increase (P = .04) in %ΔCOMP was seen during nonbraced than braced walking in individuals who demonstrated increased COMP during nonbraced walking. No difference (P = .86) in %ΔCSA was present between the braced and nonbraced conditions. CONCLUSIONS: Braced walking may improve sagittal-plane gait biomechanics and %ΔCOMP in a subset of individuals who demonstrate a typical increased COMP response to load (ie, increase in COMP) after nonbraced walking.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Osteoarthritis, Knee , Male , Female , Humans , Cross-Over Studies , Walking/physiology , Gait/physiology , Knee Joint/physiology , Osteoarthritis, Knee/etiology , Biomechanical Phenomena , Anterior Cruciate Ligament Reconstruction/adverse effects , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/complications
8.
Gait Posture ; 100: 132-138, 2023 02.
Article in English | MEDLINE | ID: mdl-36521257

ABSTRACT

BACKGROUND: More than half of patients with lower-limb amputation who use socket prostheses experience at least one fall annually. These falls are primarily attributed to reduced proprioception which negatively affects balance. A promising alternative to socket prostheses are osseointegrated prostheses that involve direct fixation of the prosthetic limb to the residual limb through a bone-anchored implant, yet its effect on balance remains unknown. RESEARCH QUESTION: Do osseointegrated prostheses change static and dynamic balance, as well as patient reported measures of balance confidence, compared to a socket prosthesis? METHODS: A sample of 10 patients with unilateral transfemoral amputation scheduled to undergo prosthesis osseointegration were enrolled (6 F/4 M, BMI: 26.7 ± 2.9 kg/m2, Age: 46.1 ± 6.3 years). Motion capture data during quiet standing (eyes opened and eyes closed) and overground walking at a self-selected speed, and the Activities-Specific Balance Confidence (ABC) scale, were collected before (with socket prosthesis) and 12-months following osseointegration. Postural sway via the center of pressure (COP), variability of spatiotemporal parameters, and ABC scores were compared using a repeated measures design before and after osseointegration. RESULTS: Following prosthesis osseointegration, COP path length and 95 % confidence ellipse area were reduced during quiet standing (d = 0.75, P = 0.09; d = 0.52, P = 0.29, respectively) and the variability of step width and length were reduced during overground walking (d = 0.50, P = 0.06; d = 0.72, P = 0.06, respectively). Furthermore, patients reported significantly improved ABC scores with an osseointegrated prosthesis compared to a socket prosthesis (d = -1.36, P = 0.01). SIGNIFICANCE: Improvements in postural sway, reductions in gait variability, and greater balance confidence indicate that osseointegrated prostheses improve balance for people with unilateral transfemoral amputation.


Subject(s)
Amputees , Artificial Limbs , Humans , Adult , Middle Aged , Artificial Limbs/adverse effects , Osseointegration , Prosthesis Implantation/adverse effects , Amputation, Surgical , Prosthesis Design
9.
Prosthet Orthot Int ; 46(6): 553-559, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36037273

ABSTRACT

BACKGROUND: Spatiotemporal gait asymmetries are a persistent problem for people with non-traumatic lower-limb amputation. To date, there is limited knowledge of multi-session gait training interventions targeting step length symmetry after non-traumatic amputation. OBJECTIVE: The objective was to evaluate the feasibility and efficacy of an eight-session, treadmill-based error-augmentation gait training (EAT) protocol to improve spatiotemporal gait asymmetry in people with non-traumatic transtibial amputation (TTA). STUDY DESIGN: Pre-post, single group. Methods: The EAT protocol involved eight training sessions (twice per week, four weeks) of supervised split-belt treadmill walking with asymmetrical belt speeds for five, three-minute sets each session. Step length symmetry during overground walking at a self-selected gait speed was assessed prior to, weekly, and one-week after the EAT protocol. Feasibility outcomes included protocol fidelity, safety, participant acceptability, and efficacy. RESULTS: Seven of the eight participants (87.5%) completed the intervention at the prescribed dose. One participant developed a skin blister on their residual limb, which was possibly related to the intervention. No falls, musculoskeletal injuries, or increases in pain occurred. Participants rated EAT as acceptable based on scores on the Intrinsic Motivation Inventory - Interest/Enjoyment subscale (6.6 ± 0.5; mean ± SD). Average between-limb step length Normalized Symmetry Index improved (was reduced) one-week following EAT (2.41 ± 6.6) compared to baseline (5.47 ± 4.91) indicating a moderate effect size (d=0.53). CONCLUSIONS: An eight session EAT program delivered over four weeks using a split-belt treadmill is feasible for people with unilateral non-traumatic TTA and may reduce step length asymmetry up to a week after intervention.


Subject(s)
Exercise Therapy , Gait , Humans , Feasibility Studies , Recovery of Function , Exercise Therapy/methods , Amputation, Surgical , Walking
10.
Clin Biomech (Bristol, Avon) ; 98: 105715, 2022 08.
Article in English | MEDLINE | ID: mdl-35839740

ABSTRACT

BACKGROUND: Patients with transfemoral amputation and socket prostheses are at a heightened risk of developing musculoskeletal overuse injuries, commonly due to altered joint biomechanics. Osseointegrated prostheses, which involve direct anchorage of the prosthesis to the residual limb through a bone anchored prosthesis, are a novel alternative to sockets yet their biomechanical effect is largely unknown. METHODS: Four patients scheduled to undergo unilateral transfemoral prosthesis osseointegration completed two data collections (baseline with socket prosthesis and 12-months after prosthesis osseointegration) in which whole-body kinematics and ground reaction forces were collected during stand-to-sit tasks. Trunk, pelvis, and hip kinematics, and the surrounding muscle forces, were calculated using subject-specific musculoskeletal models developed in OpenSim. Peak joint angles and muscle forces were compared between timepoints using Cohen's d effect sizes. FINDINGS: Compared to baseline with socket prostheses, patients with osseointegrated prostheses demonstrated reduced lateral trunk bending (d = 1.46), pelvic obliquity (d = 1.09), and rotation (d = 1.77) toward the amputated limb during the stand to sit task. This was accompanied by increased amputated limb hip flexor, abductor, and rotator muscle forces (d> > 0.8). INTERPRETATION: Improved lumbopelvic movement patterns and stabilizing muscle forces when using an osseointegrated prosthesis indicate that this novel prosthesis type likely reduces the risk of the development and/or progression of overuse injuries, such as low back pain and osteoarthritis. We attribute the increased muscle hip muscle forces to the increased load transmission between the osseointegrated prosthesis and residual limb, which allows a greater eccentric ability of the amputated limb to control lowering during the stand-to-sit task.


Subject(s)
Amputees , Artificial Limbs , Cumulative Trauma Disorders , Amputation, Surgical , Biomechanical Phenomena , Cumulative Trauma Disorders/etiology , Humans , Osseointegration
11.
Med Sci Sports Exerc ; 54(5): 709-716, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35072659

ABSTRACT

PURPOSE: Aberrant biomechanics and altered loading frequency are associated with poor knee joint health in osteoarthritis development. After anterior cruciate ligament reconstruction (ACLR), individuals demonstrate underloading (lesser vertical ground reaction force (vGRF)) with stiffened knee gait biomechanics (lesser knee extension moment (KEM) and knee flexion angle) and take fewer daily steps as early as 6 months after surgery. The purpose of this cross-sectional laboratory study is to compare gait biomechanics throughout stance between individuals 6-12 months after ACLR who take the lowest, moderate, and highest daily steps. METHODS: Individuals with primary, unilateral history of ACLR between the ages of 16 and 35 yr were included (n = 36, 47% females; age, 21 ± 5 yr; months since ACLR, 8 ± 2). Barefoot gait biomechanics of vGRF (body weight), KEM (body weight × height), and knee flexion angle during stance were collected and time normalized. Average daily steps were collected via a waist-mounted accelerometer in free-living settings over 7 d. Participants were separated into tertiles based on lowest daily steps (3326-6042 daily steps), moderate (6043-8198 daily steps), and highest (8199-12,680 daily steps). Biomechanical outcomes of the ACLR limb during stance were compared between daily step groups using functional waveform gait analyses. RESULTS: There were no significant differences in sex, body mass index, age, or gait speed between daily step groups. Individuals with the lowest daily steps walk with lesser vGRF and lesser KEM during weight acceptance, and lesser knee flexion angle throughout stance in the ACLR limb compared with individuals with highest and moderate daily steps. CONCLUSIONS: After ACLR, individuals who take the fewest daily steps also walk with lesser vGRF during weight acceptance and a stiffened knee strategy throughout stance. These results highlight complex interactions between joint loading parameters after ACLR.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Injuries/surgery , Biomechanical Phenomena , Body Weight , Child, Preschool , Cross-Sectional Studies , Female , Gait , Humans , Infant , Knee Joint , Male
12.
J Orthop Res ; 40(10): 2248-2257, 2022 10.
Article in English | MEDLINE | ID: mdl-35060165

ABSTRACT

Aberrant joint loading contributes to the development of posttraumatic knee osteoarthritis (PTOA) following anterior cruciate ligament reconstruction (ACLR); yet little is known about the association between joint loading due to daily walking and cartilage health post-ACLR. Accelerometer-based measures of daily steps and cadence (i.e., rate of steps/min) provide information regarding daily walking in a real-world setting. The purpose of this study was to determine the association between changes in serum cartilage oligomeric matrix protein (COMP; %∆COMP), a mechanosensitive biomarker that is associated with osteoarthritis progression, following a standardized walking protocol and daily walking in individuals with ACLR and uninjured controls. Daily walking was assessed over 7 days using an accelerometer worn on the right hip in 31 individuals with ACLR and 21 controls and quantified as mean steps/day and time spent in ≥100 steps/min. Serum COMP was measured before and following a 3000-step walking protocol at a preferred speed. %∆COMP was calculated as a change in COMP relative to the prewalking value. Linear regressions were used to examine associations between daily walking and %∆COMP after adjusting for preferred speed. Fewer daily steps (ΔR2 = 0.18, p = 0.02) and fewer minutes spent in ≥100 steps/min (ΔR2 = 0.16, p = 0.03) were associated with greater %∆COMP following walking in individuals with ACLR; no statistically significant associations existed in controls (daily steps: ΔR2 = 0.03, p = 0.47; time ≥100 steps/min: ΔR2 < 0.01, p = 0.81). Clinical significance: Individuals with ACLR who engage in less daily walking undergo greater %ΔCOMP, which may represent greater cartilage degradation or turnover in response to walking.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Anterior Cruciate Ligament Injuries/surgery , Biomarkers , Cartilage Oligomeric Matrix Protein , Humans , Knee Joint/physiology
13.
J Athl Train ; 57(6): 532-539, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-34329413

ABSTRACT

CONTEXT: Better knee function is linked to psychological readiness to return to sport after anterior cruciate ligament reconstruction (ACLR). Individuals with ACLR participate in less physical activity than matched uninjured control individuals, yet the association between knee function and physical activity post-ACLR remains unclear. OBJECTIVE: To determine the associations between (1) patient-reported knee function measured using the Knee Injury and Osteoarthritis Outcome Score Knee-Related Quality of Life (KOOS-QOL), daily steps, and minutes spent in moderate-to-vigorous physical activity (MVPA) of individuals with ACLR and (2) KOOS-QOL and daily steps and MVPA in individuals with ACLR who presented with (ie, symptomatic) or without (ie, asymptomatic) clinically meaningful knee-related symptoms. DESIGN: Cross-sectional study. SETTING: Laboratory, free-living conditions. PATIENTS OR OTHER PARTICIPANTS: A total of 66 individuals with primary unilateral ACLR (36 women, 30 men; age = 22 ± 4 years, height = 1.71 ± 0.1 m, mass = 71.3 ± 12.6 kg, body mass index = 24.2 ± 2.9, time post-ACLR = 28 ± 33 months). MAIN OUTCOME MEASURE(S): We collected KOOS data and retrospectively stratified participants into those with (symptomatic group, n = 30) or without (asymptomatic group, n = 36) clinically meaningful knee-related symptoms based on previously defined KOOS cutoffs. We assessed daily steps and MVPA using accelerometers that participants wore on the right hip for 7 days. We conducted linear regressions to determine associations between KOOS-QOL and daily steps and MVPA. RESULTS: In the entire sample, no associations existed between KOOS-QOL and daily steps (ΔR2 = 0.01, P = .50) or MVPA (ΔR2 = 0.01, P = .36). In the symptomatic group, a greater KOOS-QOL was associated with more time in MVPA (ΔR2 = 0.12, P = .05). In the asymptomatic group, no associations were identified between the KOOS-QOL and daily steps and MVPA. CONCLUSIONS: Individuals with symptoms post-ACLR who spent more time in MVPA reported higher QOL.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Adolescent , Adult , Anterior Cruciate Ligament Injuries/complications , Anterior Cruciate Ligament Injuries/surgery , Cross-Sectional Studies , Exercise , Female , Humans , Knee Joint/surgery , Male , Quality of Life , Retrospective Studies , Young Adult
14.
J Athl Train ; 56(9): 960-966, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33481020

ABSTRACT

CONTEXT: Quadriceps weakness is associated with disability and aberrant gait biomechanics after anterior cruciate ligament reconstruction (ACLR). Strength-sufficiency cutoff scores, which normalize quadriceps strength to the mass of an individual, can predict who will report better function after ACLR. However, whether gait biomechanics differ between individuals who meet a strength-sufficiency cutoff (strong) and those who do not (weak) remains unknown. OBJECTIVE: To determine whether vertical ground reaction force, knee-flexion angle, and internal knee-extension moment differ throughout the stance phase of walking between individuals with strong and those with weak quadriceps after ACLR. DESIGN: Case-control study. SETTING: Laboratory. PATIENTS OR OTHER PARTICIPANTS: Individuals who underwent unilateral ACLR >12 months before testing were dichotomized into strong (n = 31) and weak (n = 116) groups. MAIN OUTCOME MEASURES: Maximal isometric quadriceps strength was measured at 90° of knee flexion using an isokinetic dynamometer and normalized to body mass. Individuals who demonstrated maximal isometric quadriceps strength ≥3.0 N·m·kg-1 were considered strong. Three-dimensional gait biomechanics were collected at a self-selected walking speed. Biomechanical data were time normalized to 100% of stance phase. Vertical ground reaction force was normalized to body weight (BW), and knee-extension moment was normalized to BW × height. Pairwise comparison functions were calculated for each outcome to identify between-groups differences for each percentile of stance. RESULTS: Vertical ground reaction force was greater in the weak group for the first 22% of stance (peak mean difference [MD] = 6.2% BW) and less in the weak group between 36% and 43% of stance (MD = 1.4% BW). Knee-flexion angle was greater (ie, more flexion) in the strong group between 6% and 52% of stance (MD = 2.3°) and smaller (ie, less flexion) between 68% and 79% of stance (MD = 1.0°). Knee-extension moment was greater in the strong group between 7% and 62% of stance (MD = 0.007 BW × height). CONCLUSIONS: Individuals with ACLR who generated knee-extension torque ≥3.0 N·m·kg-1 exhibited different biomechanical gait profiles than those who could not. More strength may allow for better energy attenuation after ACLR.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Humans , Biomechanical Phenomena , Anterior Cruciate Ligament Injuries/surgery , Case-Control Studies , Anterior Cruciate Ligament Reconstruction/methods , Quadriceps Muscle , Gait , Knee Joint/surgery
15.
Med Sci Sports Exerc ; 53(1): 108-114, 2021 01.
Article in English | MEDLINE | ID: mdl-32826633

ABSTRACT

PURPOSE: History of an anterior cruciate ligament reconstruction (ACLR) and high body mass index (BMI) are strong independent risk factors for knee osteoarthritis (KOA) onset. The combination of these risk factors may further negatively affect joint loading and KOA risk. We sought to determine the combined influence of BMI and ACLR on walking speed and gait biomechanics that are hypothesized to influence KOA onset. METHODS: Walking speed and gait biomechanics (peak vertical ground reaction force [vGRF], peak vGRF instantaneous loading rate [vGRF-LR], peak knee flexion angle, knee flexion excursion [KFE], peak internal knee extension moment [KEM], and peak internal knee abduction moment [KAM]) were collected in 196 individuals with unilateral ACLR and 106 uninjured controls. KFE was measured throughout stance phase, whereas all other gait biomechanics were analyzed during the first 50% of stance phase. A 2 × 2 ANOVA was performed to evaluate the interaction between BMI and ACLR and main effects for both BMI and ACLR on walking speed and gait biomechanics between four cohorts (high BMI ACLR, normal BMI ACLR, high BMI controls, and normal BMI controls). RESULTS: History of an ACLR and high BMI influenced slower walking speed (F1,298 = 7.34, P = 0.007), and history of an ACLR and normal BMI influenced greater peak vGRF-LR (F1,298 = 6.56, P = 0.011). When evaluating main effects, individuals with an ACLR demonstrated lesser KFE (F1,298 = 7.85, P = 0.005) and lesser peak KEM (F1,298 = 6.31, P = 0.013), and individuals with high BMI demonstrated lesser peak KAM (F1,297 = 5.83, P = 0.016). CONCLUSION: BMI and history of ACLR together influence walking speed and peak vGRF-LR. History of an ACLR influences KFE and peak KEM, whereas BMI influences peak KAM. BMI may need to be considered when designing interventions aimed at restoring gait biomechanics post-ACLR.


Subject(s)
Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction , Body Mass Index , Gait/physiology , Walking Speed/physiology , Adult , Biomechanical Phenomena , Cross-Sectional Studies , Female , Humans , Male , Osteoarthritis, Knee/etiology , Risk Factors , Young Adult
16.
Hum Mov Sci ; 73: 102685, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32980589

ABSTRACT

Biofeedback has recently been explored to target deviant lower extremity loading mechanics following anterior cruciate ligament reconstruction (ACLR) to mitigate the development of post traumatic osteoarthritis. The impact this feedback has on the structure of the stride interval dynamics-a barometer of gait system health-however, have yet to be examined. This study was designed to assess how feedback, used to alter lower-extremity loading during gait, affects the structure of stride interval variability by examining long-range stride-to-stride correlations during gait in those with unilateral ACLR. Twelve participants walked under three separate loading conditions: (1) control (i.e., no cue) (2) high loading, and (3) low loading. Baseline vertical ground reaction force (vGRF) data was used to calculate a target 5% change in vGRF for the appropriate loading condition (i.e., high loading was +5% vGRF, low loading was -5% vGRF). The target for the load condition was displayed on a screen along with real-time vGRF values, prescribing changes in stride-to-stride peak vertical ground reaction forces of each limb. From time-series of stride intervals (i.e., duration), we analyzed the mean and standard deviation of stride-to-stride variability and, via detrended fluctuation analysis (i.e., DFA α), temporal persistence for each feedback condition. Both the high and low loading conditions exhibited a change toward more temporally persistent stride intervals (high loading: α =0.92, low loading: α = 0.98) than walking under the control condition (α = 0.78; high vs. control: p = .026, low vs. control: p = .001). Overall, these results indicate that altering lower extremity load changes the temporal persistence of the stride internal dynamics in ACLR individuals, demonstrating the implications of the design of gait training interventions and the influence feedback has on movement strategies.


Subject(s)
Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction , Biofeedback, Psychology , Gait , Lower Extremity/surgery , Adult , Biomechanical Phenomena , Female , Humans , Male , Movement , North Carolina , Orthopedics , Surveys and Questionnaires , Universities , Young Adult
17.
Clin Biomech (Bristol, Avon) ; 76: 105014, 2020 06.
Article in English | MEDLINE | ID: mdl-32388079

ABSTRACT

BACKGROUND: We aimed to determine the effect of cueing an increase or decrease in the vertical ground reaction force impact peak (peak in the first 50% of stance) on vertical ground reaction force, knee flexion angle, internal knee extension moment, and internal knee abduction moment waveforms throughout stance in individuals 6-12 months after an anterior cruciate ligament reconstruction. METHODS: Twelve individuals completed 3 conditions (High, Low, and Control) where High and Low Conditions cue a 5% body weight increase or decrease, respectively, in the vertical ground reaction force impact peak compared to usual walking. Biomechanics during High and Low Conditions were compared to the Control Condition throughout stance. FINDINGS: The High Condition resulted in: (a) increased vertical ground reaction forces at each peak and decreased during mid-stance, (b) greater knee excursion (i.e., greater knee flexion angle in early stance and a more extended knee in late stance), (c) greater internal extension moment for the majority of stance, and (d) lesser second internal knee abduction moment peak. The Low Condition resulted in: (a) vertical ground reaction forces decreased during early stance and increased during mid-stance, (b) decreased knee excursion, (c) increased internal extension moment throughout stance, and (d) decreased internal knee abduction moment peaks. INTERPRETATION: Cueing a 5% body weight increase in vertical ground reaction force impact peak resulted in a more dynamic vertical ground reaction force loading pattern, increased knee excursion, and a greater internal extension moment during stance which may be useful in restoring gait patterns following anterior cruciate ligament reconstruction.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Gait/physiology , Mechanical Phenomena , Adult , Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament Injuries/surgery , Biomechanical Phenomena , Female , Humans , Male
18.
Med Sci Sports Exerc ; 52(10): 2086-2095, 2020 10.
Article in English | MEDLINE | ID: mdl-32251254

ABSTRACT

Transcutaneous electrical nerve stimulation (TENS) facilitates quadriceps voluntary activation in experimental settings. Augmenting therapeutic exercise (TE) with TENS may enhance the benefits of TE in individuals with knee osteoarthritis (KOA) and quadriceps voluntary activation failure (QVAF). PURPOSE: This study aimed to determine the effect of TENS + TE on patient-reported function, quadriceps strength, and voluntary activation, as well as physical performance compared with sham TENS + TE (Sham) and TE alone in individuals with symptomatic KOA and QVAF. METHODS: Ninety individuals participated in a double-blinded randomized controlled trial. Everyone received 10 standardized TE sessions of physical therapy. TENS + TE and Sham groups applied the respective devices during all TE sessions and throughout activities of daily living over 4 wk. The Western Ontario and McMaster University Osteoarthritis Index (WOMAC), quadriceps strength, and voluntary activation, as well as a 20-m walk test, chair-stand test, and stair-climb test were performed at baseline, after the 4-wk intervention (post 1) and at 8 wk after the start of the intervention (post 2). Mixed-effects models were used to determine between-group differences between baseline and post 1, as well as baseline and post 2. RESULTS: Improvements in WOMAC subscales, quadriceps strength, and voluntary activation, 20-m walk times, chair-stand repetitions, and stair-climb time were found at post 1 and post 2 compared with baseline for all groups (P < 0.05). WOMAC Pain and Stiffness improved in the TENS + TE group compared with TE alone at post 1 (P < 0.05); yet, no other between-group differences were found. CONCLUSIONS: TE effectively improved patient-reported function, quadriceps strength, and voluntary activation, as well as physical performance in individuals with symptomatic KOA and QVAF, but augmenting TE with TENS did not improve the benefits of TE.


Subject(s)
Exercise Therapy , Osteoarthritis, Knee/rehabilitation , Quadriceps Muscle/physiology , Transcutaneous Electric Nerve Stimulation , Activities of Daily Living , Adult , Aged , Double-Blind Method , Exercise Test/methods , Female , Humans , Male , Middle Aged , Muscle Strength , Osteoarthritis, Knee/physiopathology , Patient Reported Outcome Measures , Physical Functional Performance , Walking Speed
19.
Med Sci Sports Exerc ; 52(4): 785-794, 2020 04.
Article in English | MEDLINE | ID: mdl-31809411

ABSTRACT

PURPOSE: To compare gait biomechanics throughout stance phase 6 and 12 months after unilateral anterior cruciate ligament reconstruction (ACLR) between ACLR and contralateral limbs and compared with controls. METHODS: Vertical ground reaction force (vGRF), knee flexion angle (KFA), and internal knee extension moment (KEM) were collected bilaterally 6 and 12 months post-ACLR in 30 individuals (50% female, 22 ± 3 yr, body mass index = 23.8 ± 2.2 kg·m) and at a single time point in 30 matched uninjured controls (50% female, 22 ± 4 yr, body mass index = 23.6 ± 2.1 kg·m). Functional analyses of variance were used to evaluate the effects of limb (ACLR, contralateral, and control) and time (6 and 12 months) on biomechanical outcomes throughout stance. RESULTS: Compared with the uninjured controls, the ACLR group demonstrated bilaterally lesser vGRF (ACLR, 9% body weight [BW]; contralateral, 4%BW) during early stance and greater vGRF during midstance (ACLR, 5%BW; contralateral, 4%BW) 6 months post-ACLR. Compared to the uninjured controls, the ACLR group demonstrated bilaterally lesser vGRF (ACLR, 10%BW; contralateral, 8%BW) during early stance and greater vGRF during midstance (ACLR, 5%BW; contralateral, 5%BW) 12 months post-ACLR. Compared with controls, the ACLR limb demonstrated lesser KFA during early stance at 6 (2.3°) and 12 months post-ACLR (2.0°), and the contralateral limb demonstrated lesser KFA during early stance at 12 months post-ACLR (2.8°). Compared with controls, the ACLR limb demonstrated lesser KEM during early stance at both 6 months (0.011BW × height) and 12 months (0.007BW × height) post-ACLR, and the contralateral limb demonstrated lesser KEM during early stance only at 12 months (0.006BW × height). CONCLUSIONS: Walking biomechanics are altered bilaterally after ACLR. During the first 12 months post-ACLR, both the ACLR and contralateral limbs demonstrate biomechanical differences compared with control limbs. Differences between the contralateral and control limbs increase from 6 to 12 months post-ACLR.


Subject(s)
Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction , Gait , Leg/physiopathology , Biomechanical Phenomena , Female , Follow-Up Studies , Humans , Knee Joint/physiopathology , Longitudinal Studies , Male , Prospective Studies , Young Adult
20.
J Ultrasound Med ; 39(5): 957-965, 2020 May.
Article in English | MEDLINE | ID: mdl-31763713

ABSTRACT

OBJECTIVES: To evaluate changes in the femoral cartilage cross-sectional area (CSA) measured with ultrasound (US) between baseline and 1000, 2000, 3000, 4000, and 5000 steps of walking on a treadmill. METHODS: Forty-one healthy individuals completed a single testing session. Participants rested with their knees extended on a plinth for 45 minutes to unload the femoral cartilage. Ultrasound was used to acquire images of the femoral cartilage before the treadmill-walking protocol. After the baseline US acquisition, participants walked on a treadmill at their preferred overground walking speed for 1000 steps, after which additional US images of the femoral cartilage were acquired. This process was repeated after 2000, 3000, 4000, and 5000 steps. A 1-way repeated-measures analysis of variance compared the CSA across the 6 step counts. An analysis of variance with repeated measures on time and Bonferroni corrected planned comparisons (.05/5) were used to evaluate differences in the femoral cartilage at each step count compared to baseline. RESULTS: The study included 20 male and 21 female participants (mean age ± SD, 21.5 ± 2.8 years; mean body mass index, 24.3 ± 3.4 kg/m 2 ). The CSAs were significantly greater at the 2000-step (1.27 ± 1.75 mm 2 ; P < .001), 4000-step (0.89 ± 1.17 mm2; P < .001), and 5000-step (2.10 ± 1.73 mm 2 ; P < .001) points compared to baseline. The CSA was significantly less at the 3000-step point (1.05 ± 1.29 mm 2 ; P < .001) compared to baseline. CONCLUSIONS: Changes in the CSA after walking may be dependent on the number of steps. The participants had a significant decrease in the CSA after 3000 steps of normal walking and a significant increase in the CSA after 2000, 4000, and 5000 steps of normal walking.


Subject(s)
Cartilage, Articular/anatomy & histology , Exercise Test/methods , Knee Joint/anatomy & histology , Ultrasonography/methods , Walking/statistics & numerical data , Adolescent , Adult , Female , Femur/anatomy & histology , Humans , Male , Walking/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...