Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 40(12): 1537-1549.e12, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36400018

ABSTRACT

In the Circulating Cell-free Genome Atlas (NCT02889978) substudy 1, we evaluate several approaches for a circulating cell-free DNA (cfDNA)-based multi-cancer early detection (MCED) test by defining clinical limit of detection (LOD) based on circulating tumor allele fraction (cTAF), enabling performance comparisons. Among 10 machine-learning classifiers trained on the same samples and independently validated, when evaluated at 98% specificity, those using whole-genome (WG) methylation, single nucleotide variants with paired white blood cell background removal, and combined scores from classifiers evaluated in this study show the highest cancer signal detection sensitivities. Compared with clinical stage and tumor type, cTAF is a more significant predictor of classifier performance and may more closely reflect tumor biology. Clinical LODs mirror relative sensitivities for all approaches. The WG methylation feature best predicts cancer signal origin. WG methylation is the most promising technology for MCED and informs development of a targeted methylation MCED test.


Subject(s)
Cell-Free Nucleic Acids , Neoplasms , Humans , Cell-Free Nucleic Acids/genetics , Early Detection of Cancer , Neoplasms/diagnosis , Neoplasms/genetics , Biomarkers, Tumor/genetics , DNA Methylation
SELECTION OF CITATIONS
SEARCH DETAIL
...