Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
medRxiv ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38947029

ABSTRACT

Aims/hypothesis: Triglyceride (TG) /High density lipoprotein cholesterol (HDL-C) ratio (THR) represents a single surrogate predictor of hyperinsulinemia or insulin resistance that is associated with premature aging processes, risk of diabetes and increased mortality. To identify novel genetic loci for THR change over time (ΔTHR), we conducted genome-wide association study (GWAS) and genome-wide linkage scan (GWLS) among subjects of European ancestry who had complete data from two exams collected about seven years apart from the Long Life Family Study (LLFS, n=1384), a study with familial clustering of exceptional longevity in the US and Denmark. Methods: Subjects with diabetes or using medications for dyslipidemia were excluded from this analysis. ΔTHR was derived using growth curve modeling, and adjusted for age, sex, field centers, and principal components (PCs). GWAS was conducted using a linear mixed model accounted for familial relatedness. Our linkage scan was built on haplotype-based IBD estimation with 0.5 cM average spacing. Results: Heritability of ΔTHR was moderate (46%). Our GWAS identified a significant locus at the LPL (p=1.58e-9) for ΔTHR; this gene locus has been reported before influencing baseline THR levels. Our GWLS found evidence for a significant linkage with a logarithm of the odds (LODs) exceeding 3 on 3q28 (LODs=4.1). Using a subset of 25 linkage enriched families (pedigree-specific LODs>0.1), we assessed sequence elements under 3q28 and identified two novel variants (EIF4A2/ADIPOQ-rs114108468, p=5e-6, MAF=1.8%; TPRG1-rs16864075, p=3e-6, MAF=8%; accounted for ~28% and ~29% of the linkage, respectively, and 57% jointly). While the former variant was associated with EIF4A2 (p=7e-5) / ADIPOQ (p=3.49e-2) RNA transcriptional levels, the latter variant was not associated with TPRG1 (p=0.23) RNA transcriptional levels. Replication in FHS OS observed modest effect of these loci on ΔTHR. Of 188 metabolites from 13 compound classes assayed in LLFS, we observed multiple metabolites (e.g., DG.38.5, PE.36.4, TG.58.3) that were significantly associated with the variants (p<3e-4). Conclusions: our linkage-guided sequence analysis approach permitted our discovery of two novel gene variants EIF4A2/ADIPOQ-rs114108468 and TPRG1-rs16864075 on 3q28 for ΔTHR among subjects without diabetes selected for exceptional survival and healthy aging.

2.
bioRxiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38826248

ABSTRACT

Over Several years, we have developed a system for assuring the quality of whole genome sequence (WGS) data in the LLFS families. We have focused on providing data to identify germline genetic variants with the aim of releasing as many variants on as many individuals as possible. We aim to assure the quality of the individual calls. The availability of family data has enabled us to use and validate some filters not commonly used in population-based studies. We developed slightly different procedures for the autosomal, X, Y, and Mitochondrial (MT) chromosomes. Some of these filters are specific to family data, but some can be used with any WGS data set. We also describe the procedure we use to construct linkage markers from the SNP sequence data and how we compute IBD values for use in linkage analysis.

3.
Article in English | MEDLINE | ID: mdl-38808484

ABSTRACT

BACKGROUND: Grip strength is a robust indicator of overall health, is moderately heritable, and predicts longevity in older adults. METHODS: Using genome-wide linkage analysis, we identified a novel locus on chromosome 18p (mega-basepair region: 3.4-4.0) linked to grip strength in 3 755 individuals from 582 families aged 64 ±â€…12 years (range 30-110 years; 55% women). There were 26 families that contributed to the linkage peak (cumulative logarithm of the odds [LOD] score = 10.94), with 6 families (119 individuals) accounting for most of the linkage signal (LOD = 6.4). In these 6 families, using whole genome sequencing data, we performed association analyses between the 7 312 single nucleotide (SNVs) and insertion deletion (INDELs) variants in the linkage region and grip strength. Models were adjusted for age, age2, sex, height, field center, and population substructure. RESULTS: We found significant associations between genetic variants (8 SNVs and 4 INDELs, p < 5 × 10-5) in the Disks Large-associated Protein 1 (DLGAP1) gene and grip strength. Haplotypes constructed using these variants explained up to 98.1% of the LOD score. Finally, RNAseq data showed that these variants were significantly associated with the expression of nearby Myosin Light Chain 12A (MYL12A), Structural Maintenance of Chromosomes Flexible Hinge Domain Containing 1 (SMCHD1), Erythrocyte Membrane Protein Band 4.1 Like 3 (EPB41L3) genes (p < .0004). CONCLUSIONS: The DLGAP1 gene plays an important role in the postsynaptic density of neurons; thus, it is both a novel positional and biological candidate gene for follow-up studies aimed at uncovering genetic determinants of muscle strength.


Subject(s)
Genome-Wide Association Study , Hand Strength , Humans , Female , Male , Middle Aged , Aged , Hand Strength/physiology , Adult , Aged, 80 and over , Genetic Linkage/genetics , Longevity/genetics , Polymorphism, Single Nucleotide , SAP90-PSD95 Associated Proteins/genetics , Muscle Strength/genetics , Muscle Strength/physiology
4.
Article in English | MEDLINE | ID: mdl-35180297

ABSTRACT

BACKGROUND: Pulmonary function (PF) progressively declines with aging. Forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) are predictors of morbidity of pulmonary and cardiovascular diseases and all-cause mortality. In addition, reduced PF is associated with elevated chronic low-grade systemic inflammation, glucose metabolism, body fatness, and low muscle strength. It may suggest pleiotropic genetic effects between PF with these age-related factors. METHODS: We evaluated whether FEV1 and FVC share common pleiotropic genetic effects factors with interleukin-6, high-sensitivity C-reactive protein, body mass index, muscle (grip) strength, plasma glucose, and glycosylated hemoglobin in 3,888 individuals (age range: 26-106). We employed sex-combined and sex-specific correlated meta-analyses to test whether combining genome-wide association p-values from two or more traits enhances the ability to detect variants sharing effects on these correlated traits. RESULTS: We identified 32 loci for PF, including 29 novel pleiotropic loci associated with pulmonary function and (i) body fatness (CYP2U1/SGMS2), (ii) glucose metabolism (CBWD1/DOCK8 and MMUT/CENPQ), (iii) inflammatory markers (GLRA3/HPGD, TRIM9, CALN1, CTNNB1/ZNF621, GATA5/SLCO4A1/NTSR1, and NPVF/C7orf31/CYCS), and (iv) muscle strength (MAL2, AC008825.1/LINC02103, AL136418.1). CONCLUSIONS: The identified genes/loci for PF and age-related traits suggest their underlying shared genetic effects, which can explain part of their phenotypic correlations. Integration of gene expression and genomic annotation data shows enrichment of our genetic variants in lung, blood, adipose, pancreas, and muscles, among others. Our findings highlight the critical roles of identified gene/locus in systemic inflammation, glucose metabolism, strength performance, PF, and pulmonary disease, which are involved in accelerated biological aging.

6.
Nat Genet ; 52(12): 1314-1332, 2020 12.
Article in English | MEDLINE | ID: mdl-33230300

ABSTRACT

Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10-8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.


Subject(s)
Blood Pressure/genetics , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Hypertension/genetics , GATA5 Transcription Factor/genetics , Genome-Wide Association Study , Genotype , Humans , Mutation/genetics , Phospholipase C beta/genetics , Polymorphism, Single Nucleotide/genetics
7.
Am J Hum Genet ; 104(1): 112-138, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30595373

ABSTRACT

Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.


Subject(s)
DNA, Mitochondrial/genetics , Genes, Mitochondrial/genetics , Genetic Variation/genetics , Metabolism/genetics , Mitochondria/genetics , Mitochondria/metabolism , Adipocytes/metabolism , Body Mass Index , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cohort Studies , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Glucose/metabolism , Glycated Hemoglobin/metabolism , Humans , Insulin/metabolism , Quantitative Trait Loci , Waist-Hip Ratio
8.
BMC Proc ; 12(Suppl 9): 37, 2018.
Article in English | MEDLINE | ID: mdl-30263046

ABSTRACT

To examine whether single-nucleotide polymorphism (SNP) by methylation interactions can be detected, we analyzed GAW20 simulated triglycerides at visits 3 and 4 against baseline (visits 1 and 2) under 4 general linear models and 2 tree-based models in 200 replications of a sample of 680 individuals. Effects for SNPs, methylation cytosine-phosphate-guanine (CpG) effects, and interactions for SNP/CpG pairs were included. Causative SNPs/CpG pairs distributed on autosomal chromosomes 1 to 20 were tested to examine sensitivity. We also tested noncausative SNP/CpG pairs on chromosomes 21 and 22 to estimate the empirical null. We found reasonable power to detect the main causative loci, with the exact power depending on sample size and strength of effects at the SNP and CpG sites.

9.
BMC Geriatr ; 16: 80, 2016 Apr 09.
Article in English | MEDLINE | ID: mdl-27060904

ABSTRACT

BACKGROUND: The Long Life Family Study (LLFS) is an international study to identify the genetic components of various healthy aging phenotypes. We hypothesized that pedigree-specific rare variants at longevity-associated genes could have a similar functional impact on healthy phenotypes. METHODS: We performed custom hybridization capture sequencing to identify the functional variants in 464 candidate genes for longevity or the major diseases of aging in 615 pedigrees (4,953 individuals) from the LLFS, using a multiplexed, custom hybridization capture. Variants were analyzed individually or as a group across an entire gene for association to aging phenotypes using family based tests. RESULTS: We found significant associations to three genes and nine single variants. Most notably, we found a novel variant significantly associated with exceptional survival in the 3' UTR OBFC1 in 13 individuals from six pedigrees. OBFC1 (chromosome 10) is involved in telomere maintenance, and falls within a linkage peak recently reported from an analysis of telomere length in LLFS families. Two different algorithms for single gene associations identified three genes with an enrichment of variation that was significantly associated with three phenotypes (GSK3B with the Healthy Aging Index, NOTCH1 with diastolic blood pressure and TP53 with serum HDL). CONCLUSIONS: Sequencing analysis of family-based associations for age-related phenotypes can identify rare or novel variants.


Subject(s)
Genetic Association Studies , High-Throughput Nucleotide Sequencing , Longevity/genetics , Pedigree , Phenotype , Aged , Female , Genetic Testing , Genetic Variation/genetics , Humans , Male
10.
Prostate ; 76(5): 479-90, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26708993

ABSTRACT

BACKGROUND: Because a significant number of patients with prostate cancer (PCa) are diagnosed with disease unlikely to cause harm, genetic markers associated with clinically aggressive PCa have potential clinical utility. Since cell cycle checkpoint dysregulation is crucial for the development and progression of cancer, we tested the hypothesis that common germ-line variants within cell cycle genes were associated with aggressive PCa. METHODS: Via a two-stage design, 364 common sequence variants in 88 genes were tested. The initial stage consisted of 258 aggressive PCa patients and 442 controls, and the second stage added 384 aggressive PCa Patients and 463 controls. European-American and African-American samples were analyzed separately. In the first stage, SNPs were typed by Illumina Goldengate assay while in the second stage SNPs were typed by Pyrosequencing assays. Genotype frequencies between cases and controls were compared using logistical regression analysis with additive, dominant and recessive models. RESULTS: Eleven variants within 10 genes (CCNC, CCND3, CCNG1, CCNT2, CDK6, MDM2, SKP2, WEE1, YWHAB, YWHAH) in the European-American population and nine variants in 7 genes (CCNG1, CDK2, CDK5, MDM2, RB1, SMAD3, TERF2) in the African-American population were found to be associated with aggressive PCa using at least one model. Of particular interest, CCNC (rs3380812) was associated with risk in European-American cohorts from both institutions. CDK2 (rs1045435) and CDK5 (rs2069459) were associated with risk in the African-American cohorts from both institutions. Lastly, variants within MDM2 and CCNG1 were protective for aggressive PCa in both ethnic groups. CONCLUSIONS: This study confirms that polymorphisms within cell cycle genes are associated with clinically aggressive PCa. Validation of these markers in additional populations is necessary, but these markers may help identify patients at risk for potentially lethal carcinoma.


Subject(s)
Cell Cycle Proteins/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Prostate/pathology , Prostatic Neoplasms/genetics , Adult , Black or African American/genetics , Aged , Aged, 80 and over , Cell Cycle Checkpoints/genetics , Gene Frequency , Genotype , Humans , Male , Middle Aged , Prostatic Neoplasms/pathology
11.
J Gerontol A Biol Sci Med Sci ; 70(8): 1003-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25758594

ABSTRACT

BACKGROUND: The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems. METHODS: We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted for mortality risk in 3,140 individuals selected for familial longevity from the Long Life Family Study. The genome-wide association study used the Long Life Family Study as the discovery cohort and individuals from the Cardiovascular Health Study and the Framingham Heart Study as replication cohorts. RESULTS: There were no genome-wide significant findings from the genome-wide association study; however, several single-nucleotide polymorphisms near ZNF704 on chromosome 8q21.13 were suggestively associated with the HAI in the Long Life Family Study (p < 10(-) (6)) and nominally replicated in the Cardiovascular Health Study and Framingham Heart Study. Linkage results revealed significant evidence (log-odds score = 3.36) for a quantitative trait locus for mortality-optimized HAI in women on chromosome 9p24-p23. However, results of fine-mapping studies did not implicate any specific candidate genes within this region of interest. CONCLUSIONS: ZNF704 may be a potential candidate gene for studies of the genetic underpinnings of longevity.


Subject(s)
Aging , Genetic Linkage , Genome-Wide Association Study , Apolipoproteins E/genetics , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Humans , Longevity , Polymorphism, Single Nucleotide , Quantitative Trait Loci
12.
Hum Genet ; 133(7): 919-30, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24604477

ABSTRACT

Non-high-density lipoprotein cholesterol(NHDL) is an independent and superior predictor of CVD risk as compared to low-density lipoprotein alone. It represents a spectrum of atherogenic lipid fractions with possibly a distinct genomic signature. We performed genome-wide association studies (GWAS) to identify loci influencing baseline NHDL and its postprandial lipemic (PPL) response. We carried out GWAS in 4,241 participants of European descent. Our discovery cohort included 928 subjects from the Genetics of Lipid-Lowering Drugs and Diet Network Study. Our replication cohorts included 3,313 subjects from the Heredity and Phenotype Intervention Heart Study and Family Heart Study. A linear mixed model using the kinship matrix was used for association tests. The best association signal was found in a tri-genic region at RHOQ-PIGF-CRIPT for baseline NHDL (lead SNP rs6544903, discovery p = 7e-7, MAF = 2 %; validation p = 6e-4 at 0.1 kb upstream neighboring SNP rs3768725, and 5e-4 at 0.7 kb downstream neighboring SNP rs6733143, MAF = 10 %). The lead and neighboring SNPs were not perfect surrogate proxies to each other (D' = 1, r (2) = 0.003) but they seemed to be partially dependent (likelihood ration test p = 0.04). Other suggestive loci (discovery p < 1e-6) included LOC100419812 and LOC100288337 for baseline NHDL, and LOC100420502 and CDH13 for NHDL PPL response that were not replicated (p > 0.01). The current and first GWAS of NHDL yielded an interesting common variant in RHOQ-PIGF-CRIPT influencing baseline NHDL levels. Another common variant in CDH13 for NHDL response to dietary high-fat intake challenge was also suggested. Further validations for both loci from large independent studies, especially interventional studies, are warranted.


Subject(s)
Cholesterol/blood , Genome-Wide Association Study , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Cadherins/genetics , Cholesterol, HDL , Cohort Studies , Female , Genetic Variation , Genotype , Humans , Linear Models , Lipid Metabolism , Male , Membrane Proteins/genetics , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Postprandial Period , rho GTP-Binding Proteins/genetics
13.
Metabolism ; 63(4): 461-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24405752

ABSTRACT

OBJECTIVE: Glycated hemoglobin (HbA1c) is a stable index of chronic glycemic status and hyperglycemia associated with progressive development of insulin resistance and frank diabetes. It is also associated with premature aging and increased mortality. To uncover novel loci for HbA1c that are associated with healthy aging, we conducted a genome-wide association study (GWAS) using non-diabetic participants in the Long Life Family Study (LLFS), a study with familial clustering of exceptional longevity in the US and Denmark. METHODS: A total of 4088 non-diabetic subjects from the LLFS were used for GWAS discoveries, and a total of 8231 non-diabetic subjects from the Atherosclerosis Risk in Communities Study (ARIC, in the MAGIC Consortium) and the Health, Aging, and Body Composition Study (HABC) were used for GWAS replications. HbA1c was adjusted for age, sex, centers, 20 principal components, without and with BMI. A linear mixed effects model was used for association testing. RESULTS: Two known loci at GCK rs730497 (or rs2908282) and HK1 rs17476364 were confirmed (p<5e-8). Of 25 suggestive (5e-8

Subject(s)
Genome-Wide Association Study , Glycated Hemoglobin/metabolism , Longevity , Aged , Cohort Studies , Denmark , Diabetes Mellitus/blood , Female , Genotype , Humans , Male , Middle Aged , Phenotype , United States
14.
Aging (Albany NY) ; 5(9): 653-61, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24244950

ABSTRACT

Despite evidence from family studies that there is a strong genetic influence upon exceptional longevity, relatively few genetic variants have been associated with this trait. One reason could be that many genes individually have such weak effects that they cannot meet standard thresholds of genome wide significance, but as a group in specific combinations of genetic variations, they can have a strong influence. Previously we reported that such genetic signatures of 281 genetic markers associated with about 130 genes can do a relatively good job of differentiating centenarians from non­centenarians particularly if the centenarians are 106 years and older. This would support our hypothesis that the genetic influence upon exceptional longevity increases with older and older (and rarer) ages. We investigated this list of markers using similar genetic data from 5 studies of centenarians from the USA, Europe and Japan. The results from the meta­analysis show that many of these variants are associated with survival to these extreme ages in other studies. Since many centenarians compress morbidity and disability towards the end of their lives, these results could point to biological pathways and therefore new therapeutics to increase years of healthy lives in the general population.


Subject(s)
Genetic Variation , Longevity/genetics , Aged, 80 and over , Aging/genetics , Alzheimer Disease/genetics , Case-Control Studies , Coronary Artery Disease/genetics , Female , Gene Regulatory Networks , Genetic Markers , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide
15.
Front Genet ; 4: 65, 2013.
Article in English | MEDLINE | ID: mdl-23658558

ABSTRACT

Personality traits have been shown to be associated with longevity and healthy aging. In order to discover novel genetic modifiers associated with personality traits as related with longevity, we performed a genome-wide association study (GWAS) on personality factors assessed by NEO-five-factor inventory in individuals enrolled in the Long Life Family Study (LLFS), a study of 583 families (N up to 4595) with clustering for longevity in the United States and Denmark. Three SNPs, in almost perfect LD, associated with agreeableness reached genome-wide significance (p < 10(-8)) and replicated in an additional sample of 1279 LLFS subjects, although one (rs9650241) failed to replicate and the other two were not available in two independent replication cohorts, the Baltimore Longitudinal Study of Aging and the New England Centenarian Study. Based on 10,000,000 permutations, the empirical p-value of 2 × 10(-7) was observed for the genome-wide significant SNPs. Seventeen SNPs that reached marginal statistical significance in the two previous GWASs (p-value <10(-4) and 10(-5)), were also marginally significantly associated in this study (p-value <0.05), although none of the associations passed the Bonferroni correction. In addition, we tested age-by-SNP interactions and found some significant associations. Since scores of personality traits in LLFS subjects change in the oldest ages, and genetic factors outweigh environmental factors to achieve extreme ages, these age-by-SNP interactions could be a proxy for complex gene-gene interactions affecting personality traits and longevity.

16.
Genet Epidemiol ; 35 Suppl 1: S22-8, 2011.
Article in English | MEDLINE | ID: mdl-22128054

ABSTRACT

Next-generation sequencing of large numbers of individuals presents challenges in data preparation, quality control, and statistical analysis because of the rarity of the variants. The Genetic Analysis Workshop 17 (GAW17) data provide an opportunity to survey existing methods and compare these methods with novel ones. Specifically, the GAW17 Group 2 contributors investigate existing and newly proposed methods and study design strategies to identify rare variants, predict functional variants, and/or examine quality control. We introduce the eight Group 2 papers, summarize their approaches, and discuss their strengths and weaknesses. For these investigations, some groups used only the genotype data, whereas others also used the simulated phenotype data. Although the eight Group 2 contributions covered a wide variety of topics under the general idea of identifying rare variants, they can be grouped into three broad categories according to their common research interests: functionality of variants and quality control issues, family-based analyses, and association analyses of unrelated individuals. The aims of the first subgroup were quite different. These were population structure analyses that used rare variants to predict functionality and examine the accuracy of genotype calls. The aims of the family-based analyses were to select which families should be sequenced and to identify high-risk pedigrees; the aim of the association analyses was to identify variants or genes with regression-based methods. However, power to detect associations was low in all three association studies. Thus this work shows opportunities for incorporating rare variants into the genetic and statistical analyses of common diseases.


Subject(s)
Genetic Variation , Molecular Epidemiology/methods , Molecular Epidemiology/standards , Algorithms , Exome/genetics , Genetic Predisposition to Disease , Human Genome Project , Humans , Quality Control , Regression Analysis , Sequence Analysis/standards
17.
Hum Hered ; 70(1): 55-62, 2010.
Article in English | MEDLINE | ID: mdl-20551674

ABSTRACT

Variance components (VC) and the Bayesian Markov chain Monte Carlo (MCMC) analysis are two of the widely used linkage analysis approaches to mapping genes for complex quantitative traits. Both approaches can handle extended pedigrees and multiple markers and do not require a prespecified genetic model. In this study, we used simulated data to compare the performance of these two approaches with the traditional parametric linkage analysis. Using simulated data sets without linkage between a quantitative trait and the markers, we estimated a critical value for various test scores used in VC or MCMC and the location (LOC) score at a fixed level of significance (5%). These critical values were then used to determine the power for the three methods for simulated data sets with linkage. We found that both the VC and MCMC approaches worked well, compared with the LOC score, when there was only one gene underlying the quantitative trait; however, VC had higher power than the other methods in a simulation study of a complex phenotype influenced by more than one gene. We also compared two implementations of MCMC analysis, finding interpretation of results using the log of placement score was more accurate for linkage inference than the Bayes factor but required much more intensive simulation studies.


Subject(s)
Genetic Linkage , Bayes Theorem , Humans , Markov Chains , Monte Carlo Method
19.
BMC Proc ; 3 Suppl 7: S4, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-20018031

ABSTRACT

The Genetic Analysis Workshop (GAW) 16 Problem 3 comprises simulated phenotypes emulating the lipid domain and its contribution to cardiovascular disease risk. For each replication there were 6,476 subjects in families from the Framingham Heart Study (FHS), with their actual genotypes for Affymetrix 550 k single-nucleotide polymorphisms (SNPs) and simulated phenotypes. Phenotypes are simulated at three visits, 10 years apart. There are up to 6 "major" genes influencing variation in high- and low-density lipoprotein cholesterol (HDL, LDL), and triglycerides (TG), and 1,000 "polygenes" simulated for each trait. Some polygenes have pleiotropic effects. The locus-specific heritabilities of the major genes range from 0.1 to 1.0%, under additive, dominant, or overdominant modes of inheritance. The locus-specific effects of the polygenes ranged from 0.002 to 0.15%, with effect sizes selected from negative exponential distributions. All polygenes act independently and have additive effects. Individuals in the LDL upper tail were designated medicated. Subjects medicated increased across visits at 2%, 5%, and 15%. Coronary artery calcification (CAC) was simulated using age, lipid levels, and CAC-specific polymorphisms. The risk of myocardial infarction before each visit was determined by CAC and its interactions with smoking and two genetic loci. Smoking was simulated to be commensurate with rates reported by the Centers for Disease Control. Two hundred replications were simulated.

20.
BMC Proc ; 3 Suppl 7: S98, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-20018095

ABSTRACT

We examine a Bayesian Markov-chain Monte Carlo framework for simultaneous segregation and linkage analysis in the simulated single-nucleotide polymorphism data provided for Genetic Analysis Workshop 16. We conducted linkage only, linkage and association, and association only tests under this framework. We also compared these results with variance-component linkage analysis and regression analyses. The results indicate that the method shows some promise, but finding genes that have very small (<0.1%) contributions to trait variance may require additional sources of information. All methods examined fared poorly for the smallest in the simulated "polygene" range (h2 of 0.0015 to 0.0002).

SELECTION OF CITATIONS
SEARCH DETAIL
...