Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Blood ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662991

ABSTRACT

In the phase-2 clinical trial (AIM) of venetoclax-ibrutinib, 24 patients with mantle cell lymphoma (MCL; 23 with relapsed/refractory [R/R] disease) received ibrutinib 560mg and venetoclax 400mg both once daily. High complete remission (CR) and measurable residual disease negative (MRD-negative) CR rates were previously reported. With median survivor follow-up now exceeding 7 years, we report long-term results. Treatment was initially continuous, with elective treatment interruption (ETI) allowed after protocol amendment for patients in MRD-negative CR. For R/R MCL, the estimated 7-year progression-free survival (PFS) was 30% [95%CI: 14-49] (median 28 months [95%CI: 13-82]) and overall survival was 43% [95%CI: 23-62] (median 32 months [95%CI: 15-NE]). Eight patients in MRD-negative CR entered ETI for a median of 58 months (95%CI, 37-79), with four experiencing disease recurrence. Two of 3 re-attained CR on retreatment. Time-to-treatment-failure (TTF), which excluded progression in ETI for those reattaining response, was 39% overall and 68% at 7-years for responders. Beyond 56 weeks Grade 3 and serious adverse events were uncommon. Newly emergent or increasing cardiovascular toxicity were not observed beyond 56 weeks. We demonstrate long-term durable responses and acceptable toxicity profile of venetoclax-ibrutinib in R/R MCL and show feasibility of treatment interruption while maintaining ongoing disease control. (NCT02471391).

2.
Nat Commun ; 15(1): 1823, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418463

ABSTRACT

In this phase II, single arm trial (ACTRN12617000720314), we investigate if alternating osimertinib and gefitinib would delay the development of resistance to osimertinib in advanced, non-small cell lung cancer (NSCLC) with the epidermal growth factor receptor (EGFR) T790M mutation (n = 47) by modulating selective pressure on resistant clones. The primary endpoint is progression free-survival (PFS) rate at 12 months, and secondary endpoints include: feasibility of alternating therapy, overall response rate (ORR), overall survival (OS), and safety. The 12-month PFS rate is 38% (95% CI 27.5-55), not meeting the pre-specified primary endpoint. Serial circulating tumor DNA (ctDNA) analysis reveals decrease and clearance of the original activating EGFR and EGFR-T790M mutations which are prognostic of clinical outcomes. In 73% of participants, loss of T790M ctDNA is observed at progression and no participants have evidence of the EGFR C797S resistance mutation following the alternating regimen. These findings highlight the challenges of treatment strategies designed to modulate clonal evolution and the clinical importance of resistance mechanisms beyond suppression of selected genetic mutations in driving therapeutic escape to highly potent targeted therapies.


Subject(s)
Acrylamides , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Gefitinib/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , ErbB Receptors/genetics , Mutation , Protein Kinase Inhibitors/adverse effects , Aniline Compounds/therapeutic use
3.
Genome Biol ; 24(1): 229, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828498

ABSTRACT

BACKGROUND: Existing methods to detect tumor signal in liquid biopsy have focused on the analysis of nuclear cell-free DNA (cfDNA). However, non-nuclear cfDNA and in particular mitochondrial DNA (mtDNA) has been understudied. We hypothesize that an increase in mtDNA in plasma could reflect the presence of cancer, and that leveraging cell-free mtDNA could enhance cancer detection. RESULTS: We survey 203 healthy and 664 cancer plasma samples from three collection centers covering 12 cancer types with whole genome sequencing to catalogue the plasma mtDNA fraction. The mtDNA fraction is increased in individuals with cholangiocarcinoma, colorectal, liver, pancreatic, or prostate cancer, in comparison to that in healthy individuals. We detect almost no increase of mtDNA fraction in individuals with other cancer types. The mtDNA fraction in plasma correlates with the cfDNA tumor fraction as determined by somatic mutations and/or copy number aberrations. However, the mtDNA fraction is also elevated in a fraction of patients without an apparent increase in tumor-derived cfDNA. A predictive model integrating mtDNA and copy number analysis increases the area under the curve (AUC) from 0.73 when using copy number alterations alone to an AUC of 0.81. CONCLUSIONS: The mtDNA signal retrieved by whole genome sequencing has the potential to boost the detection of cancer when combined with other tumor-derived signals in liquid biopsies.


Subject(s)
Cell-Free Nucleic Acids , Prostatic Neoplasms , Male , Humans , Liquid Biopsy , Mitochondria/genetics , DNA, Mitochondrial/genetics , Prostatic Neoplasms/genetics , Biomarkers, Tumor/genetics
4.
Clin Cancer Res ; 29(6): 1017-1030, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36638198

ABSTRACT

PURPOSE: BRAF V600E mutant metastatic colorectal cancer represents a significant clinical problem, with combination approaches being developed clinically with oral BRAF inhibitors combined with EGFR-targeting antibodies. While compelling preclinical data have highlighted the effectiveness of combination therapy with vemurafenib and small-molecule EGFR inhibitors, gefitinib or erlotinib, in colorectal cancer, this therapeutic strategy has not been investigated in clinical studies. PATIENTS AND METHODS: We conducted a phase Ib/II dose-escalation/expansion trial investigating the safety/efficacy of the BRAF inhibitor vemurafenib and EGFR inhibitor erlotinib. RESULTS: Thirty-two patients with BRAF V600E positive metastatic colorectal cancer (mCRC) and 7 patients with other cancers were enrolled. No dose-limiting toxicities were observed in escalation, with vemurafenib 960 mg twice daily with erlotinib 150 mg daily selected as the recommended phase II dose. Among 31 evaluable patients with mCRC and 7 with other cancers, overall response rates were 32% [10/31, 16% (5/31) confirmed] and 43% (3/7), respectively, with clinical benefit rates of 65% and 100%. Early ctDNA dynamics were predictive of treatment efficacy, and serial ctDNA monitoring revealed distinct patterns of convergent genomic evolution associated with acquired treatment resistance, with frequent emergence of MAPK pathway alterations, including polyclonal KRAS, NRAS, and MAP2K1 mutations, and MET amplification. CONCLUSIONS: The Erlotinib and Vemurafenib In Combination Trial study demonstrated a safe and novel combination of two oral inhibitors targeting BRAF and EGFR. The dynamic assessment of serial ctDNA was a useful measure of underlying genomic changes in response to this combination and in understanding potential mechanisms of resistance.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Humans , Vemurafenib , Erlotinib Hydrochloride/adverse effects , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Indoles , Sulfonamides , Colonic Neoplasms/drug therapy , Protein Kinase Inhibitors/adverse effects , Rectal Neoplasms/drug therapy , Mutation , ErbB Receptors/genetics , ErbB Receptors/metabolism
5.
Nat Cell Biol ; 25(2): 258-272, 2023 02.
Article in English | MEDLINE | ID: mdl-36635503

ABSTRACT

Precise control of activating H3K4me3 and repressive H3K27me3 histone modifications at bivalent promoters is essential for normal development and frequently corrupted in cancer. By coupling a cell surface readout of bivalent MHC class I gene expression with whole-genome CRISPR-Cas9 screens, we identify specific roles for MTF2-PRC2.1, PCGF1-PRC1.1 and Menin-KMT2A/B complexes in maintaining bivalency. Genetic loss or pharmacological inhibition of Menin unexpectedly phenocopies the effects of polycomb disruption, resulting in derepression of bivalent genes in both cancer cells and pluripotent stem cells. While Menin and KMT2A/B contribute to H3K4me3 at active genes, a separate Menin-independent function of KMT2A/B maintains H3K4me3 and opposes polycomb-mediated repression at bivalent genes. Release of KMT2A from active genes following Menin targeting alters the balance of polycomb and KMT2A at bivalent genes, facilitating gene activation. This functional partitioning of Menin-KMT2A/B complex components reveals therapeutic opportunities that can be leveraged through inhibition of Menin.


Subject(s)
Pluripotent Stem Cells , Transcription Factors , Polycomb-Group Proteins/genetics , Transcription Factors/genetics , Genome , Promoter Regions, Genetic
6.
Cancer Cell ; 40(10): 1190-1206.e9, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36179686

ABSTRACT

There is increasing recognition of the prognostic significance of tumor cell major histocompatibility complex (MHC) class II expression in anti-cancer immunity. Relapse of acute myeloid leukemia (AML) following allogeneic stem cell transplantation (alloSCT) has recently been linked to MHC class II silencing in leukemic blasts; however, the regulation of MHC class II expression remains incompletely understood. Utilizing unbiased CRISPR-Cas9 screens, we identify that the C-terminal binding protein (CtBP) complex transcriptionally represses MHC class II pathway genes, while the E3 ubiquitin ligase complex component FBXO11 mediates degradation of CIITA, the principal transcription factor regulating MHC class II expression. Targeting these repressive mechanisms selectively induces MHC class II upregulation across a range of AML cell lines. Functionally, MHC class II+ leukemic blasts stimulate antigen-dependent CD4+ T cell activation and potent anti-tumor immune responses, providing fundamental insights into the graft-versus-leukemia effect. These findings establish the rationale for therapeutic strategies aimed at restoring tumor-specific MHC class II expression to salvage AML relapse post-alloSCT and also potentially to enhance immunotherapy outcomes in non-myeloid malignancies.


Subject(s)
F-Box Proteins , Leukemia, Myeloid, Acute , Alcohol Oxidoreductases , DNA-Binding Proteins , F-Box Proteins/genetics , HLA Antigens/genetics , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Lymphocyte Activation , Protein-Arginine N-Methyltransferases/metabolism , Recurrence , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
8.
Cancer Discov ; 12(9): 2058-2073, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35771551

ABSTRACT

There is limited knowledge on the benefit of the α-subunit-specific PI3K inhibitor alpelisib in later lines of therapy for advanced estrogen receptor-positive (ER+) HER2- and triple-negative breast cancer (TNBC). We conducted a phase II multicohort study of alpelisib monotherapy in patients with advanced PI3K pathway mutant ER+HER2- and TNBC. In the intention-to-treat ER+ cohort, the overall response rate was 30% and the clinical benefit rate was 36%. A decline in PI3K pathway mutant circulating tumor DNA (ctDNA) levels from baseline to week 8 while on therapy was significantly associated with a partial response, clinical benefit, and improved progression-free-survival [HR 0.24; 95% confidence interval (CI), 0.083-0.67, P = 0.0065]. Detection of ESR1 mutations at baseline in plasma was also associated with clinical benefit and improved progression-free survival (HR 0.22; 95% CI, 0.078-0.60, P = 0.003). SIGNIFICANCE: Alpelisib monotherapy displayed efficacy in heavily pretreated ER+ breast cancer with PIK3CA mutations. PIK3CA mutation dynamics in plasma during treatment and ESR1 mutations detected in plasma at baseline were candidate biomarkers predictive of benefit from alpelisib, highlighting the utility of ctDNA assays in this setting. This article is highlighted in the In This Issue feature, p. 2007.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases/genetics , Female , Humans , Mutation , Phosphatidylinositol 3-Kinases/genetics , Receptor, ErbB-2/genetics , Thiazoles , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics
9.
Ann Surg ; 276(2): e120-e126, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35737908

ABSTRACT

OBJECTIVE: To explore the clinical utility of circulating tumor DNA (ctDNA) in esophageal adenocarcinoma (EAC) by developing a cost-effective and rapid technique utilising targeted amplicon sequencing. SUMMARY OF BACKGROUND DATA: Emerging evidence suggests that levels of ctDNA in the blood can be used to monitor treatment response and in the detection of disease recurrence in various cancer types. Current staging modalities for EAC such as computerised tomography of the chest/abdomen/pelvis (CT) and positron emission tomography (PET) do not reliably detect occult micro-metastatic disease, the presence of which signifies a poor prognosis. After curative-intent treatment, some patients are still at high risk of recurrent disease, and there is no widely accepted optimal surveillance tool for patients with EAC. METHODS: Sixty-two patients with EAC were investigated for the presence of ctDNA using a tumor-informed approach. We designed a custom targeted amplicon sequencing panel of target specific primers covering mutational foci in 9 of the most commonly mutated genes in EAC. Serial blood samples were taken before and after neoadjuvant treatment (NAT), and during surveillance. RESULTS: Somatic mutations were detected in pre-treatment biopsy samples of 55 out of 62 (89%) EAC patients. Mutations in TP53 (80%) were the most common. Out of these 55 patients, 20 (36%) had detectable ctDNA at baseline. The majority (90%) of patients with detectable ctDNA had either locally advanced tumors, nodal involvement or metastatic disease. In patients with locally advanced tumors, disease free survival (DFS) was more accurately stratified using pre-treatment ctDNA status [HR 4.34 (95% CI 0.93-20.21); P = 0.05] compared to nodal status on PET-CT. In an exploratory subgroup analysis, patients who are node negative but ctDNA positive have inferior DFS [HR 11.71 (95% CI 1.16-118.80) P = 0.04]. In blood samples taken before and following NAT, clearance of ctDNA after NAT was associated with a favourable response to treatment. Furthermore, patients who are ctDNA positive during post-treatment surveillance are at high risk of relapse. CONCLUSIONS: Our study shows that ctDNA has potential to provide additional prognostication over conventional staging investigation such as CT and PET. It may also have clinical utility in the assessment of response to NAT and as a biomarker for the surveillance of recurrent disease.


Subject(s)
Adenocarcinoma , Circulating Tumor DNA , Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Esophageal Neoplasms , Humans , Mutation , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Positron Emission Tomography Computed Tomography , Prognosis
10.
Pathology ; 54(6): 772-778, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35618509

ABSTRACT

Droplet digital PCR (ddPCR) has been demonstrated in many research studies to be a sensitive method in the analysis of circulating tumour DNA (ctDNA) for identifying mutations and tracking disease. The transition of ddPCR into the diagnostic setting requires a number of critical steps including the assessment of accuracy and precision and ultimately implementation into clinical use. Here we present the clinical validation of ddPCR for the detection of BRAF mutations (V600E and V600K) from plasma. We describe the performance characteristics assessed including the limit of blank, limit of detection, ruggedness, accuracy, precision and the effect of the matrix. Overall, each assay could achieve a limit of detection of 0.5% variant allele fraction and was highly accurate, with 100% concordance of results obtained from routine diagnostic testing of formalin fixed tumour samples or reference controls (n=36 for BRAF V600E and n=30 for BRAF V600K). Inter-laboratory reproducibility across 12 plasma samples for each assay was also assessed and results were 100% concordant. Overall, we report the successful validation and translation of a ddPCR assay into clinical routine practice.


Subject(s)
Cell-Free Nucleic Acids , Circulating Tumor DNA , Circulating Tumor DNA/genetics , DNA Mutational Analysis/methods , Formaldehyde , Humans , Mutation , Polymerase Chain Reaction/methods , Proto-Oncogene Proteins B-raf/genetics , Reproducibility of Results
11.
Oncologist ; 27(7): e561-e570, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35278078

ABSTRACT

Despite the strong prognostic stratification of circulating tumor cells (CTCs) enumeration in metastatic breast cancer (MBC), current clinical trials usually do not include a baseline CTCs in their design. This study aimed to generate a classifier for CTCs prognostic simulation in existing datasets for hypothesis generation in patients with MBC. A K-nearest neighbor machine learning algorithm was trained on a pooled dataset comprising 2436 individual MBC patients from the European Pooled Analysis Consortium and the MD Anderson Cancer Center to identify patients likely to have CTCs ≥ 5/7 mL blood (StageIVaggressive vs StageIVindolent). The model had a 65.1% accuracy and its prognostic impact resulted in a hazard ratio (HR) of 1.89 (Simulatedaggressive vs SimulatedindolentP < .001), similar to patients with actual CTCs enumeration (HR 2.76; P < .001). The classifier's performance was then tested on an independent retrospective database comprising 446 consecutive hormone receptor (HR)-positive HER2-negative MBC patients. The model further stratified clinical subgroups usually considered prognostically homogeneous such as patients with bone-only or liver metastases. Bone-only disease classified as Simulatedaggressive had a significantly worse overall survival (OS; P < .0001), while patients with liver metastases classified as Simulatedindolent had a significantly better prognosis (P < .0001). Consistent results were observed for patients who had undergone CTCs enumeration in the pooled population. The differential prognostic impact of endocrine- (ET) and chemotherapy (CT) was explored across the simulated subgroups. No significant differences were observed between ET and CT in the overall population, both in terms of progression-free survival (PFS) and OS. In contrast, a statistically significant difference, favoring CT over ET was observed among Simulatedaggressive patients (HR: 0.62; P = .030 and HR: 0.60; P = .037, respectively, for PFS and OS).


Subject(s)
Breast Neoplasms , Clinical Trials as Topic , Liver Neoplasms , Neoplastic Cells, Circulating , Biomarkers, Tumor , Computer Simulation , Female , Humans , Liver Neoplasms/drug therapy , Neoplastic Cells, Circulating/pathology , Prognosis , Retrospective Studies
12.
Nature ; 601(7894): 623-629, 2022 01.
Article in English | MEDLINE | ID: mdl-34875674

ABSTRACT

Breast cancers are complex ecosystems of malignant cells and the tumour microenvironment1. The composition of these tumour ecosystems and interactions within them contribute to responses to cytotoxic therapy2. Efforts to build response predictors have not incorporated this knowledge. We collected clinical, digital pathology, genomic and transcriptomic profiles of pre-treatment biopsies of breast tumours from 168 patients treated with chemotherapy with or without HER2 (encoded by ERBB2)-targeted therapy before surgery. Pathology end points (complete response or residual disease) at surgery3 were then correlated with multi-omic features in these diagnostic biopsies. Here we show that response to treatment is modulated by the pre-treated tumour ecosystem, and its multi-omics landscape can be integrated in predictive models using machine learning. The degree of residual disease following therapy is monotonically associated with pre-therapy features, including tumour mutational and copy number landscapes, tumour proliferation, immune infiltration and T cell dysfunction and exclusion. Combining these features into a multi-omic machine learning model predicted a pathological complete response in an external validation cohort (75 patients) with an area under the curve of 0.87. In conclusion, response to therapy is determined by the baseline characteristics of the totality of the tumour ecosystem captured through data integration and machine learning. This approach could be used to develop predictors for other cancers.


Subject(s)
Breast Neoplasms , Ecosystem , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Genomics , Humans , Machine Learning , Neoadjuvant Therapy , Tumor Microenvironment
13.
Nature ; 601(7891): 125-131, 2022 01.
Article in English | MEDLINE | ID: mdl-34880496

ABSTRACT

All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear1, little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness2. Here, using single-cell profiling and lineage tracing (SPLINTR)-an expressed barcoding strategy-we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene (Slpi), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells3, leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies.


Subject(s)
Cell Competition , Clone Cells/pathology , Leukemia, Myeloid, Acute/pathology , Single-Cell Analysis , Animals , Cell Competition/drug effects , Cell Line , Cell Lineage/drug effects , Clone Cells/drug effects , Clone Cells/metabolism , Female , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mice , Mice, Inbred C57BL , Secretory Leukocyte Peptidase Inhibitor/metabolism
14.
Cancer Discov ; 12(3): 774-791, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34862195

ABSTRACT

Cancer cell metabolism is increasingly recognized as providing an exciting therapeutic opportunity. However, a drug that directly couples targeting of a metabolic dependency with the induction of cell death in cancer cells has largely remained elusive. Here we report that the drug-like small-molecule ironomycin reduces the mitochondrial iron load, resulting in the potent disruption of mitochondrial metabolism. Ironomycin promotes the recruitment and activation of BAX/BAK, but the resulting mitochondrial outer membrane permeabilization (MOMP) does not lead to potent activation of the apoptotic caspases, nor is the ensuing cell death prevented by inhibiting the previously established pathways of programmed cell death. Consistent with the fact that ironomycin and BH3 mimetics induce MOMP through independent nonredundant pathways, we find that ironomycin exhibits marked in vitro and in vivo synergy with venetoclax and overcomes venetoclax resistance in primary patient samples. SIGNIFICANCE: Ironomycin couples targeting of cellular metabolism with cell death by reducing mitochondrial iron, resulting in the alteration of mitochondrial metabolism and the activation of BAX/BAK. Ironomycin induces MOMP through a different mechanism to BH3 mimetics, and consequently combination therapy has marked synergy in cancers such as acute myeloid leukemia. This article is highlighted in the In This Issue feature, p. 587.


Subject(s)
Iron , bcl-2 Homologous Antagonist-Killer Protein , Apoptosis , Cell Death , Humans , Iron/metabolism , Mitochondria/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism
15.
Nat Med ; 27(6): 1006-1011, 2021 06.
Article in English | MEDLINE | ID: mdl-34099923

ABSTRACT

People with human immunodeficiency virus (HIV) have higher rates of certain comorbidities, particularly cardiovascular disease and cancer, than people without HIV1-5. In view of observations that somatic mutations associated with age-related clonal hematopoiesis (CH) are linked to similar comorbidities in the general population6-10, we hypothesized that CH may be more prevalent in people with HIV. To address this issue, we established a prospective cohort study, the ARCHIVE study (NCT04641013), in which 220 HIV-positive and 226 HIV-negative participants aged 55 years or older were recruited in Australia. Demographic characteristics, clinical data and peripheral blood were collected to assess the presence of CH mutations and to identify potential risk factors for and clinical sequelae of CH. In total, 135 CH mutations were identified in 100 (22.4%) of 446 participants. CH was more prevalent in HIV-positive participants than in HIV-negative participants (28.2% versus 16.8%, P = 0.004), overall and across all age groups; the adjusted odds ratio for having CH in those with HIV was 2.16 (95% confidence interval 1.34-3.48, P = 0.002). The most common genes mutated overall were DNMT3A (47.4%), TET2 (20.0%) and ASXL1 (13.3%). CH and HIV infection were independently associated with increases in blood parameters and biomarkers associated with inflammation. These data suggest a selective advantage for the emergence of CH in the context of chronic infection and inflammation related to HIV infection.


Subject(s)
Cardiovascular Diseases/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA-Binding Proteins/genetics , HIV Infections/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Aged , Aging/genetics , Aging/pathology , Cardiovascular Diseases/complications , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/virology , Clonal Hematopoiesis/genetics , DNA Methyltransferase 3A , Dioxygenases , Female , HIV/pathogenicity , HIV Infections/complications , HIV Infections/epidemiology , HIV Infections/virology , Humans , Inflammation/genetics , Inflammation/pathology , Inflammation/virology , Male , Middle Aged , Mutation/genetics , Neoplasms/complications , Neoplasms/epidemiology , Neoplasms/genetics , Neoplasms/virology
16.
Genome Biol ; 22(1): 187, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162397

ABSTRACT

BACKGROUND: The human microbiome plays an important role in cancer. Accumulating evidence indicates that commensal microbiome-derived DNA may be represented in minute quantities in the cell-free DNA of human blood and could possibly be harnessed as a new cancer biomarker. However, there has been limited use of rigorous experimental controls to account for contamination, which invariably affects low-biomass microbiome studies. RESULTS: We apply a combination of 16S-rRNA-gene sequencing and droplet digital PCR to determine if the specific detection of cell-free microbial DNA (cfmDNA) is possible in metastatic melanoma patients. Compared to matched stool and saliva samples, the absolute concentration of cfmDNA is low but significantly above the levels detected from negative controls. The microbial community of plasma is strongly influenced by laboratory and reagent contaminants introduced during the DNA extraction and sequencing processes. Through the application of an in silico decontamination strategy including the filtering of amplicon sequence variants (ASVs) with batch dependent abundances and those with a higher prevalence in negative controls, we identify known gut commensal bacteria, such as Faecalibacterium, Bacteroides and Ruminococcus, and also other uncharacterised ASVs. We analyse additional plasma samples, highlighting the potential of this framework to identify differences in cfmDNA between healthy and cancer patients. CONCLUSIONS: Together, these observations indicate that plasma can harbour a low yet detectable level of cfmDNA. The results highlight the importance of accounting for contamination and provide an analytical decontamination framework to allow the accurate detection of cfmDNA for future biomarker studies in cancer and other diseases.


Subject(s)
Cell-Free Nucleic Acids/genetics , DNA, Bacterial/genetics , Melanoma/microbiology , Microbiota/genetics , Skin Neoplasms/microbiology , Bacteroides/classification , Bacteroides/genetics , Bacteroides/isolation & purification , Cell-Free Nucleic Acids/blood , DNA Contamination , DNA, Bacterial/blood , Faecalibacterium/classification , Faecalibacterium/genetics , Faecalibacterium/isolation & purification , Feces/microbiology , Humans , Melanoma/diagnosis , Melanoma/pathology , Neoplasm Metastasis , Neoplasm Staging , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Ruminococcus/classification , Ruminococcus/genetics , Ruminococcus/isolation & purification , Saliva/microbiology , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , Symbiosis/physiology
17.
Nat Commun ; 12(1): 1434, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664264

ABSTRACT

Although melanoma is initiated by acquisition of point mutations and limited focal copy number alterations in melanocytes-of-origin, the nature of genetic changes that characterise lethal metastatic disease is poorly understood. Here, we analyze the evolution of human melanoma progressing from early to late disease in 13 patients by sampling their tumours at multiple sites and times. Whole exome and genome sequencing data from 88 tumour samples reveals only limited gain of point mutations generally, with net mutational loss in some metastases. In contrast, melanoma evolution is dominated by whole genome doubling and large-scale aneuploidy, in which widespread loss of heterozygosity sculpts the burden of point mutations, neoantigens and structural variants even in treatment-naïve and primary cutaneous melanomas in some patients. These results imply that dysregulation of genomic integrity is a key driver of selective clonal advantage during melanoma progression.


Subject(s)
Aneuploidy , DNA Copy Number Variations/genetics , Genome, Human/genetics , Melanoma/genetics , Skin Neoplasms/genetics , Disease Progression , Exome/genetics , Humans , INDEL Mutation/genetics , Melanocytes/pathology , Point Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Exome Sequencing , Whole Genome Sequencing , Melanoma, Cutaneous Malignant
18.
Diagnostics (Basel) ; 11(1)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440749

ABSTRACT

Blood-based liquid biopsies are considered a new and promising diagnostic and monitoring tool for cancer. As liquid biopsies only require a blood draw, they are non-invasive, potentially more rapid and assumed to be a less costly alternative to genomic analysis of tissue biopsies. A multi-disciplinary workshop (n = 98 registrations) was organized to discuss routine implementation of liquid biopsies in cancer management. Real-time polls were used to engage with experts' about the current evidence of clinical utility and the barriers to implementation of liquid biopsies. Clinical, laboratory and health economics presentations were given to illustrate the opportunities and current levels of evidence, followed by three moderated break-out sessions to discuss applications. The workshop concluded that tumor-informed assays using next-generation sequencing (NGS) or PCR-based genotyping assays will most likely provide better clinical utility than tumor-agnostic assays, yet at a higher cost. For routine application, it will be essential to determine clinical utility, to define the minimum quality standards and performance of testing platforms and to ensure their use is integrated into current clinical workflows including how they complement tissue biopsies and imaging. Early health economic models may help identifying the most viable application of liquid biopsies. Alternative funding models for the translation of complex molecular diagnostics, such as liquid biopsies, may also be explored if clinical utility has been demonstrated and when their use is recommended in multi-disciplinary consensus guidelines.

19.
Med ; 2(12): 1292-1313, 2021 12 10.
Article in English | MEDLINE | ID: mdl-35590147

ABSTRACT

Detection of minimal residual disease in patients with cancer, who are in complete remission with no cancer cells detectable, has the potential to improve recurrence-free survival through treatment selection. Studies analyzing circulating tumor DNA (ctDNA) in patients with solid tumors suggest the potential to accurately predict and detect relapse, enabling treatment strategies that may improve clinical outcomes. Over the past decade, assays for ctDNA detection in plasma samples have steadily increased in sensitivity and specificity. These are applied for the detection of residual disease after treatment and for earlier detection of recurrence. Novel clinical trials are now assessing how assays for "residual disease and recurrence" (RDR) may influence current treatment paradigms and potentially change the landscape of risk classification for cancer recurrence. In this review, we appraise the progress of RDR detection using ctDNA and consider the emerging role of liquid biopsy in the monitoring and management of solid tumors.


Subject(s)
Circulating Tumor DNA , Neoplasm Recurrence, Local , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Humans , Liquid Biopsy , Neoplasm Recurrence, Local/diagnosis , Neoplasm, Residual
20.
PLoS Med ; 17(10): e1003363, 2020 10.
Article in English | MEDLINE | ID: mdl-33001984

ABSTRACT

BACKGROUND: Metastatic breast cancer (mBC) is a heterogenous disease with increasing availability of targeted therapies as well as emerging genomic markers of therapeutic resistance, necessitating timely and accurate molecular characterization of disease. As a minimally invasive test, analysis of circulating tumour DNA (ctDNA) is well positioned for real-time genomic profiling to guide treatment decisions. Here, we report the results of a prospective testing program established to assess the feasibility of ctDNA analysis to guide clinical management of mBC patients. METHODS AND FINDINGS: Two hundred thirty-four mBC patients (median age 54 years) were enrolled between June 2015 and October 2018 at the Peter MacCallum Cancer Centre, Melbourne, Australia. Median follow-up was 15 months (range 1-46). All patient samples at the time of enrolment were analysed in real time for the presence of somatic mutations. Longitudinal plasma testing during the course of patient management was also undertaken in a subset of patients (n = 67, 28.6%), according to clinician preference, for repeated molecular profiling or disease monitoring. Detection of somatic mutations from patient plasma was performed using a multiplexed droplet digital PCR (ddPCR) approach to identify hotspot mutations in PIK3CA, ESR1, ERBB2, and AKT1. In parallel, subsets of samples were also analysed via next-generation sequencing (targeted panel sequencing and low-coverage whole-genome sequencing [LC-WGS]). The sensitivity of ddPCR and targeted panel sequencing to identify actionable mutations was compared. Results were discussed at a multidisciplinary breast cancer meeting prior to treatment decisions. ddPCR and targeted panel sequencing identified at least 1 actionable mutation at baseline in 80/234 (34.2%) and 62/159 (39.0%) of patients tested, respectively. Combined, both methods detected an actionable alteration in 104/234 patients (44.4%) through baseline or serial ctDNA testing. LC-WGS was performed on 27 patients from the cohort, uncovering several recurrently amplified regions including 11q13.3 encompassing CCND1. Increasing ctDNA levels were associated with inferior overall survival, whether assessed by ddPCR, targeted sequencing, or LC-WGS. Overall, the ctDNA results changed clinical management in 40 patients including the direct recruitment of 20 patients to clinical trials. Limitations of the study were that it was conducted at a single site and that 31.3% of participants were lost to follow-up. CONCLUSION: In this study, we found prospective ctDNA testing to be a practical and feasible approach that can guide clinical trial enrolment and patient management in mBC.


Subject(s)
Breast Neoplasms/genetics , Circulating Tumor DNA/genetics , Neoplasm Metastasis/genetics , Australia , Biomarkers, Tumor/blood , Cell-Free Nucleic Acids/genetics , Circulating Tumor DNA/blood , Class I Phosphatidylinositol 3-Kinases/genetics , Cohort Studies , Estrogen Receptor alpha/genetics , Female , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Middle Aged , Multiplex Polymerase Chain Reaction/methods , Mutation , Precision Medicine/methods , Proto-Oncogene Proteins c-akt/genetics , Receptor, ErbB-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...