Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
ACS EST Air ; 1(7): 725-733, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39021671

ABSTRACT

Since the 1930s, germicidal ultraviolet (GUV) irradiation has been used indoors to prevent the transmission of airborne diseases, such as tuberculosis and measles. Recently, it has received renewed attention due to the COVID-19 pandemic. While GUV radiation has been shown to be effective in inactivating airborne bacteria and viruses, few studies on the impact of GUV on indoor air quality have been published. In this work, we evaluate the effects of GUV222 (GUV at 222 nm) on the chemistry of a common indoor volatile organic compound (VOC), limonene. We found that the production of O3 by the GUV222 lamps caused the formation of particulate matter (PM) and oxygenated volatile organic compounds (VOCs). We also found that the chemistry proceeds through the ozonolysis of limonene as well as the reaction with secondary OH, and that the presence of GUV light led to observable but small perturbations to this chemistry. Understanding the effects of GUV222 on indoor air quality is important in evaluating the safety of these devices.

2.
Environ Sci Technol ; 57(44): 17011-17021, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37874964

ABSTRACT

Biomass burning particulate matter (BBPM) affects regional air quality and global climate, with impacts expected to continue to grow over the coming years. We show that studies of North American fires have a systematic altitude dependence in measured BBPM normalized excess mixing ratio (NEMR; ΔPM/ΔCO), with airborne and high-altitude studies showing a factor of 2 higher NEMR than ground-based measurements. We report direct airborne measurements of BBPM volatility that partially explain the difference in the BBPM NEMR observed across platforms. We find that when heated to 40-45 °C in an airborne thermal denuder, 19% of lofted smoke PM1 evaporates. Thermal denuder measurements are consistent with evaporation observed when a single smoke plume was sampled across a range of temperatures as the plume descended from 4 to 2 km altitude. We also demonstrate that chemical aging of smoke and differences in PM emission factors can not fully explain the platform-dependent differences. When the measured PM volatility is applied to output from the High Resolution Rapid Refresh Smoke regional model, we predict a lower PM NEMR at the surface compared to the lofted smoke measured by aircraft. These results emphasize the significant role that gas-particle partitioning plays in determining the air quality impacts of wildfire smoke.


Subject(s)
Air Pollutants , Air Pollution , Fires , Smoke/analysis , Air Pollutants/analysis , Biomass , Air Pollution/analysis , Particulate Matter/analysis , Aerosols/analysis , Environmental Monitoring/methods
3.
ACS Earth Space Chem ; 7(6): 1235-1246, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37342759

ABSTRACT

Atmospheric simulation chambers continue to be indispensable tools for research in the atmospheric sciences. Insights from chamber studies are integrated into atmospheric chemical transport models, which are used for science-informed policy decisions. However, a centralized data management and access infrastructure for their scientific products had not been available in the United States and many parts of the world. ICARUS (Integrated Chamber Atmospheric data Repository for Unified Science) is an open access, searchable, web-based infrastructure for storing, sharing, discovering, and utilizing atmospheric chamber data [https://icarus.ucdavis.edu]. ICARUS has two parts: a data intake portal and a search and discovery portal. Data in ICARUS are curated, uniform, interactive, indexed on popular search engines, mirrored by other repositories, version-tracked, vocabulary-controlled, and citable. ICARUS hosts both legacy data and new data in compliance with open access data mandates. Targeted data discovery is available based on key experimental parameters, including organic reactants and mixtures that are managed using the PubChem chemical database, oxidant information, nitrogen oxide (NOx) content, alkylperoxy radical (RO2) fate, seed particle information, environmental conditions, and reaction categories. A discipline-specific repository such as ICARUS with high amounts of metadata works to support the evaluation and revision of atmospheric model mechanisms, intercomparison of data and models, and the development of new model frameworks that can have more predictive power in the current and future atmosphere. The open accessibility and interactive nature of ICARUS data may also be useful for teaching, data mining, and training machine learning models.

4.
Environ Sci Technol ; 57(15): 6263-6272, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37011031

ABSTRACT

Urbanization and fires perturb the quantities and composition of fine organic aerosol in the central Amazon, with ramifications for radiative forcing and public health. These disturbances include not only direct emissions of particulates and secondary organic aerosol (SOA) precursors but also changes in the pathways through which biogenic precursors form SOA. The composition of ambient organic aerosol is complex and incompletely characterized, encompassing millions of potential structures relatively few of which have been synthesized and characterized. Through analysis of submicron aerosol samples from the Green Ocean Amazon (GoAmazon2014/5) field campaign by two-dimensional gas chromatography coupled with machine learning, ∼1300 unique compounds were traced and characterized over two seasons. Fires and urban emissions produced chemically and interseasonally distinct impacts on product signatures, with only ∼50% of compounds observed in both seasons. Seasonally unique populations point to the importance of aqueous processing in Amazonian aerosol aging, but further mechanistic insights are impeded by limited product identity knowledge. Less than 10% of compounds were identifiable at an isomer-specific level. Overall, the findings (i) provide compositional characterization of anthropogenic influence on submicron organic aerosol in the Amazon, (ii) identify key season-to-season differences in chemical signatures, and (iii) highlight high-priority knowledge gaps in current speciated knowledge.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Particulate Matter/analysis , Seasons , Aerosols/analysis , Dust/analysis
5.
Environ Sci Technol ; 56(22): 15408-15416, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36326040

ABSTRACT

Indoor gas-phase radical sources are poorly understood but expected to be much different from outdoors. Several potential radical sources were measured in a windowless, light-emitting diode (LED)-lit room in a college athletic facility over a 2 week period. Alternating measurements between the room air and the supply air of the heating, ventilation, and air-conditioning system allowed an assessment of sources. Use of a chlorine-based cleaner was a source of several photolabile reactive chlorine compounds, including ClNO2 and Cl2. During cleaning events, photolysis rates for these two compounds were up to 0.0023 pptv min-1, acting as a source of chlorine atoms even in this low-light indoor environment. Unrelated to cleaning events, elevated ClNO2 was often observed during daytime and lost to ventilation. The nitrate radical (NO3), which is rapidly photolyzed outdoors during daytime, may persist in low-light indoor environments. With negligible photolysis, loss rates of NO3 indoors were dominated by bimolecular reactions. At times with high NO2 and O3 ventilated from outdoors, N2O5 was observed. Elevated ClNO2 measured concurrently suggests the formation through heterogeneous reactions, acting as an additional source of reactive chlorine within the athletic facility and outdoors.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Sports , Humans , Chlorine , Nitrogen , Air Pollutants/analysis , Halogens , Chlorides
6.
J Phys Chem A ; 126(40): 7309-7330, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36170568

ABSTRACT

Dark chamber experiments were conducted to study the SOA formed from the oxidation of α-pinene and Δ-carene under different peroxy radical (RO2) fate regimes: RO2 + NO3, RO2 + RO2, and RO2 + HO2. SOA mass yields from α-pinene oxidation were <1 to ∼25% and strongly dependent on available OA mass up to ∼100 µg m-3. The strong yield dependence of α-pinene oxidation is driven by absorptive partitioning to OA and not by available surface area for condensation. Yields from Δ-carene + NO3 were consistently higher, ranging from ∼10-50% with some dependence on OA for <25 µg m-3. Explicit kinetic modeling including vapor wall losses was conducted to enable comparisons across VOC precursors and RO2 fate regimes and to determine atmospherically relevant yields. Furthermore, SOA yields were similar for each monoterpene across the nominal RO2 + NO3, RO2 + RO2, or RO2 + HO2 regimes; thus, the volatility basis sets (VBS) constructed were independent of the chemical regime. Elemental O/C ratios of ∼0.4-0.6 and nitrate/organic mass ratios of ∼0.15 were observed in the particle phase for both monoterpenes in all regimes, using aerosol mass spectrometer (AMS) measurements. An empirical relationship for estimating particle density using AMS-derived elemental ratios, previously reported in the literature for non-nitrate containing OA, was successfully adapted to organic nitrate-rich SOA. Observations from an NO3- chemical ionization mass spectrometer (NO3-CIMS) suggest that Δ-carene more readily forms low-volatility gas-phase highly oxygenated molecules (HOMs) than α-pinene, which primarily forms volatile and semivolatile species, when reacted with NO3, regardless of RO2 regime. The similar Δ-carene SOA yields across regimes, high O/C ratios, and presence of HOMs, suggest that unimolecular and multistep processes such as alkoxy radical isomerization and decomposition may play a role in the formation of SOA from Δ-carene + NO3. The scarcity of peroxide functional groups (on average, 14% of C10 groups carried a peroxide functional group in one test experiment in the RO2 + RO2 regime) appears to rule out a major role for autoxidation and organic peroxide (ROOH, ROOR) formation. The consistently substantially lower SOA yields observed for α-pinene + NO3 suggest such pathways are less available for this precursor. The marked and robust regime-independent difference in SOA yield from two different precursor monoterpenes suggests that in order to accurately model SOA production in forested regions the chemical mechanism must feature some distinction among different monoterpenes.

7.
Environ Sci Technol ; 56(11): 6880-6893, 2022 06 07.
Article in English | MEDLINE | ID: mdl-34898185

ABSTRACT

Oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol (SOA) formation potential of ambient air in Guangzhou, China was investigated using a field-deployed oxidation flow reactor (OFR). The OFR was used to mimic hours to weeks of atmospheric exposure to hydroxyl (OH) radicals within the 2-3 min residence time. A comprehensive investigation on the variation of VOCs and OVOCs as a function of OH exposure is shown. Substantial formation of organic acids and nitrogen-containing OVOC species were observed. Maximum SOA formation in the OFR was observed following 1-4 equiv days' OH exposure. SOA produced from known/measured VOC/IVOC precursors such as single-ring aromatics and long-chain alkanes can account for 52-75% of measured SOA under low NOx and 26-60% under high NOx conditions based on laboratory SOA yield parametrizations. To our knowledge, this is the first time that the contribution (8-20%) of long-chain (C8-C20) alkane oxidation to OFR SOA formation was quantified from direct measurement. By additionally estimating contribution from unmeasured semivolatile and intermediate volatility compounds (S/IVOCs) that are committed with C8-C20 alkanes, 64-100% of the SOA formation observed in the OFR can be explained, signifying the important contribution of S/IVOCs such as large cyclic alkanes to ambient SOA.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Aerosols/analysis , Air Pollutants/analysis , Alkanes , China
8.
Environ Sci Technol ; 55(24): 16326-16338, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34870986

ABSTRACT

The role of anthropogenic NOx emissions in secondary organic aerosol (SOA) production is not fully understood but is important for understanding the contribution of emissions to air quality. Here, we examine the role of organic nitrates (RONO2) in SOA formation over the Korean Peninsula during the Korea-United States Air Quality field study in Spring 2016 as a model for RONO2 aerosol in cities worldwide. We use aircraft-based measurements of the particle phase and total (gas + particle) RONO2 to explore RONO2 phase partitioning. These measurements show that, on average, one-fourth of RONO2 are in the condensed phase, and we estimate that ≈15% of the organic aerosol (OA) mass can be attributed to RONO2. Furthermore, we observe that the fraction of RONO2 in the condensed phase increases with OA concentration, evidencing that equilibrium absorptive partitioning controls the RONO2 phase distribution. Lastly, we model RONO2 chemistry and phase partitioning in the Community Multiscale Air Quality modeling system. We find that known chemistry can account for one-third of the observed RONO2, but there is a large missing source of semivolatile, anthropogenically derived RONO2. We propose that this missing source may result from the oxidation of semi- and intermediate-volatility organic compounds and/or from anthropogenic molecules that undergo autoxidation or multiple generations of OH-initiated oxidation.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Aerosols/analysis , Air Pollutants/analysis , Cities , Nitrates/analysis
9.
Indoor Air ; 31(5): 1323-1339, 2021 09.
Article in English | MEDLINE | ID: mdl-33337567

ABSTRACT

Humans spend approximately 90% of their time indoors, impacting their own air quality through occupancy and activities. Human VOC emissions indoors from exercise are still relatively uncertain, and questions remain about emissions from chlorine-based cleaners. To investigate these and other issues, the ATHLETic center study of Indoor Chemistry (ATHLETIC) campaign was conducted in the weight room of the Dal Ward Athletic Center at the University of Colorado Boulder. Using a Vocus Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (Vocus PTR-TOF), an Aerodyne Gas Chromatograph (GC), an Iodide-Chemical Ionization Time-of-Flight Mass Spectrometer (I-CIMS), and Picarro cavity ringdown spectrometers, we alternated measurements between the weight room and supply air, allowing for determination of VOC, NH3 , H2 O, and CO2 emission rates per person (emission factors). Human-derived emission factors were higher than previous studies of measuring indoor air quality in rooms with individuals at rest and correlated with increased CO2 emission factors. Emission factors from personal care products (PCPs) were consistent with previous studies and typically decreased throughout the day. In addition, N-chloraldimines were observed in the gas phase after the exercise equipment was cleaned with a dichlor solution. The chloraldimines likely originated from reactions of free amino acids with HOCl on gym surfaces.


Subject(s)
Air Pollution, Indoor/analysis , Detergents , Exercise , Volatile Organic Compounds , Air Pollutants , Air Pollution, Indoor/statistics & numerical data , Chlorine , Environmental Monitoring , Humans , Mass Spectrometry , Sports , Universities
10.
Indoor Air ; 31(1): 141-155, 2021 01.
Article in English | MEDLINE | ID: mdl-32696534

ABSTRACT

Understanding the sources and composition of organic aerosol (OA) in indoor environments requires rapid measurements, since many emissions and processes have short timescales. However, real-time molecular-level OA measurements have not been reported indoors. Here, we present quantitative measurements, at a time resolution of five seconds, of molecular ions corresponding to diverse aerosol-phase species, by applying extractive electrospray ionization mass spectrometry (EESI-MS) to indoor air analysis for the first time, as part of the highly instrumented HOMEChem field study. We demonstrate how the complex spectra of EESI-MS are screened in order to extract chemical information and investigate the possibility of interference from gas-phase semivolatile species. During experiments that simulated the Thanksgiving US holiday meal preparation, EESI-MS quantified multiple species, including fatty acids, carbohydrates, siloxanes, and phthalates. Intercomparisons with Aerosol Mass Spectrometer (AMS) and Scanning Mobility Particle Sizer suggest that EESI-MS quantified a large fraction of OA. Comparisons with FIGAERO-CIMS shows similar signal levels and good correlation, with a range of 100 for the relative sensitivities. Comparisons with SV-TAG for phthalates and with SV-TAG and AMS for total siloxanes also show strong correlation. EESI-MS observations can be used with gas-phase measurements to identify co-emitted gas- and aerosol-phase species, and this is demonstrated using complementary gas-phase PTR-MS observations.


Subject(s)
Aerosols/analysis , Air Pollution, Indoor , Spectrometry, Mass, Electrospray Ionization , Environmental Monitoring/methods , Organic Chemicals
11.
Environ Sci Technol ; 54(20): 12890-12897, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32930585

ABSTRACT

Yields of secondary organic aerosol (SOA) formation from oxidation of volatile organic compounds are measured in laboratory chambers and then applied in regional and global models. Gas-phase losses to large Teflon-walled environmental chambers have been recently shown to reduce SOA yields. Historically, most chambers have operated in batch mode. Increasingly, however, continuous flow (CF) mode is being used, in which reactants and products are continuously introduced and exhausted from the chamber. Recent literature reports indicate a belief that SOA yields measured in CF chambers are not affected by gas-phase wall losses (GWL). Here, we use an experimentally-constrained box model to show that gas-phase wall losses impact both types of chambers when run under similar conditions. We find CF experiments do mitigate some effects of gas-phase wall losses after long (>2 days) experiment run times, but they have significant losses for typical literature experiment times of 1 day. However, this mitigation phenomenon is an experiment- and mechanism-dependent, and GWL still affects the absolute SOA yield. Finally, we show that at condensation sink values higher than the wall loss rate a lack of change in yield vs seed surface area does not necessarily indicate whether GWL affects the experiment and does not suggest the magnitude.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Aerosols/analysis , Oxidation-Reduction , Polytetrafluoroethylene , Volatile Organic Compounds/analysis
12.
Environ Sci Technol ; 54(10): 5980-5991, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32271021

ABSTRACT

Anthropogenic emissions alter secondary organic aerosol (SOA) formation chemistry from naturally emitted isoprene. We use correlations of tracers and tracer ratios to provide new perspectives on sulfate, NOx, and particle acidity influencing isoprene-derived SOA in two isoprene-rich forested environments representing clean to polluted conditions-wet and dry seasons in central Amazonia and Southeastern U.S. summer. We used a semivolatile thermal desorption aerosol gas chromatograph (SV-TAG) and filter samplers to measure SOA tracers indicative of isoprene/HO2 (2-methyltetrols, C5-alkene triols, 2-methyltetrol organosulfates) and isoprene/NOx (2-methylglyceric acid, 2-methylglyceric acid organosulfate) pathways. Summed concentrations of these tracers correlated with particulate sulfate spanning three orders of magnitude, suggesting that 1 µg m-3 reduction in sulfate corresponds with at least ∼0.5 µg m-3 reduction in isoprene-derived SOA. We also find that isoprene/NOx pathway SOA mass primarily comprises organosulfates, ∼97% in the Amazon and ∼55% in Southeastern United States. We infer under natural conditions in high isoprene emission regions that preindustrial aerosol sulfate was almost exclusively isoprene-derived organosulfates, which are traditionally thought of as representative of an anthropogenic influence. We further report the first field observations showing that particle acidity correlates positively with 2-methylglyceric acid partitioning to the gas phase and negatively with the ratio of 2-methyltetrols to C5-alkene triols.


Subject(s)
Air Pollutants , Hemiterpenes , Aerosols/analysis , Brazil , Butadienes , Pentanes , Southeastern United States
13.
Proc Natl Acad Sci U S A ; 117(9): 4505-4510, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32071211

ABSTRACT

Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth's radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur. Observationally constrained model results show that more than 30% of oceanic DMS emitted to the atmosphere forms HPMTF. Coincident particle measurements suggest a strong link between HPMTF concentration and new particle formation and growth. Analyses of these observations show that HPMTF chemistry must be included in atmospheric models to improve representation of key linkages between the biogeochemistry of the ocean, marine aerosol formation and growth, and their combined effects on climate.

14.
Environ Sci Technol ; 53(22): 13053-13063, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31652057

ABSTRACT

The chemical composition of indoor air at the University of Colorado, Boulder art museum was measured by a suite of gas- and particle-phase instruments. Over 80% of the total observed organic carbon (TOOC) mass (100 µg m-3) consisted of reduced compounds (carbon oxidation state, OSC < -0.5) with high volatility (log10 C* > 7) and low carbon number (nC < 6). The museum TOOC was compared to other indoor and outdoor locations, which increased according to the following trend: remote < rural ≤ urban < indoor ≤ megacity. The museum TOOC was comparable to a university classroom and 3× less than residential environments. Trends in the total reactive flux were remote < indoor < rural < urban < megacity. High volatile organic compound (VOC) concentrations compensated low oxidant concentrations indoors to result in an appreciable reactive flux. Total hydroxyl radical (OH), ozone (O3), nitrate radical (NO3), and chlorine atom (Cl) reactivities for each location followed a similar trend to TOOC. High human occupancy events increased all oxidant reactivities in the museum by 65-125%. The lifetimes of O3, NO3, OH, and Cl reactivities were 13 h, 15 h, 23 days, and 189 days, respectively, corresponding to over 88% of indoor VOC oxidant reactivity being consumed outdoors after ventilation.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Carbon , Environmental Monitoring , Humans , Ventilation
15.
Environ Sci Technol ; 53(9): 4794-4802, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30990681

ABSTRACT

A 6-week study was conducted at the University of Colorado Art Museum, during which volatile organic compounds (VOCs), carbon dioxide (CO2), ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), other trace gases, and submicron aerosol were measured continuously. These measurements were then analyzed using a box model to quantify the rates of major processes that transformed the composition of the air. VOC emission factors were quantified for museum occupants and their activities. The deposition of VOCs to surfaces was quantified across a range of VOC saturation vapor concentrations ( C*) and Henry's Law constants ( H) and determined to be a major sink for VOCs with C* < 108 µg m-3 and H > 102 M atm-1. The reaction rates of VOCs with O3, OH radicals, and nitrate (NO3) radicals were quantified, with unsaturated and saturated VOCs having oxidation lifetimes of >5 and >15 h, making deposition to surfaces and ventilation the dominant VOC sinks in the museum. O3 loss rates were quantified inside a museum gallery, where reactions with surfaces, NO, occupants, and NO2 accounted for 62%, 31%, 5%, and 2% of the O3 sink. The measured concentrations of acetic acid, formic acid, NO2, O3, particulate matter, sulfur dioxide, and total VOCs were below the guidelines for museums.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Museums , Particulate Matter , Universities
16.
Environ Sci Process Impacts ; 20(11): 1546-1558, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30357193

ABSTRACT

Organosulfates are formed in the atmosphere from reactions between reactive organic compounds (such as oxidation products of isoprene) and acidic sulfate aerosol. Here we investigated speciated organosulfates in an area typically downwind of the city of Manaus situated in the Amazon forest in Brazil during "GoAmazon2014/5" in both the wet season (February-March) and dry season (August-October). We observe products consistent with the reaction of isoprene photooxidation products and sulfate aerosols, leading to formation of several types of isoprene-derived organosulfates, which contribute 3% up to 42% of total sulfate aerosol measured by aerosol mass spectrometry. During the wet season the average contribution of summed organic sulfate concentrations to total sulfate was 19 ± 10% and similarly during the dry season the contribution was 19 ± 8%. This is the highest fraction of speciated organic sulfate to total sulfate observed at any reported site. Organosulfates appeared to be dominantly formed from isoprene epoxydiols (IEPOX), averaging 104 ± 73 ng m-3 (range 15-328 ng m-3) during the wet season, with much higher abundance 610 ± 400 ng m-3 (range 86-1962 ng m-3) during the dry season. The concentration of isoprene-derived organic sulfate correlated with total inorganic sulfate (R2 = 0.35 and 0.51 during the wet and dry seasons, respectively), implying the significant influence of inorganic sulfate aerosol for the heterogeneous reactive uptake of IEPOX. Organosulfates also contributed to organic matter in aerosols (3.5 ± 1.9% during the wet season and 5.1 ± 2.5% during the dry season). The present study shows that an important fraction of sulfate in aerosols in the Amazon downwind of Manaus consists of multifunctional organic chemicals formed in the atmosphere, and that increased SO2 emissions would substantially increase SOA formation from isoprene.


Subject(s)
Aerosols/chemistry , Atmosphere/chemistry , Organic Chemicals/analysis , Sulfates/analysis , Aerosols/analysis , Brazil , Butadienes , Cities , Environmental Monitoring , Hemiterpenes , Mass Spectrometry , Organic Chemicals/chemistry , Oxidation-Reduction , Sulfates/chemistry , Wind
17.
Proc Natl Acad Sci U S A ; 115(9): 2038-2043, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29440409

ABSTRACT

The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.


Subject(s)
Aerosols/chemistry , Air Pollutants/chemistry , Monoterpenes/chemistry , Seasons , Southeastern United States , Time Factors
18.
Anal Chem ; 90(6): 4046-4053, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29461799

ABSTRACT

Mass spectrometry imaging is becoming an increasingly common analytical technique due to its ability to provide spatially resolved chemical information. Here, we report a novel imaging approach combining laser ablation with two mass spectrometric techniques, aerosol mass spectrometry and chemical ionization mass spectrometry, separately and in parallel. Both mass spectrometric methods provide the fast response, rapid data acquisition, low detection limits, and high-resolution peak separation desirable for imaging complex samples. Additionally, the two techniques provide complementary information with aerosol mass spectrometry providing near universal detection of all aerosol molecules and chemical ionization mass spectrometry with a heated inlet providing molecular-level detail of both gases and aerosols. The two techniques operate with atmospheric pressure interfaces and require no matrix addition for ionization, allowing for samples to be investigated in their native state under ambient pressure conditions. We demonstrate the ability of laser ablation-aerosol mass spectrometry-chemical ionization mass spectrometry (LA-AMS-CIMS) to create 2D images of both standard compounds and complex mixtures. The results suggest that LA-AMS-CIMS, particularly when combined with advanced data analysis methods, could have broad applications in mass spectrometry imaging applications.

19.
Atmos Chem Phys ; 18(14): 10433-10457, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-33354203

ABSTRACT

Biogenic volatile organic compounds (BVOCs) from the Amazon forest region represent the largest source of organic carbon emissions to the atmosphere globally. These BVOC emissions dominantly consist of volatile and intermediate-volatility terpenoid compounds that undergo chemical transformations in the atmosphere to form oxygenated condensable gases and secondary organic aerosol (SOA). We collected quartz filter samples with 12 h time resolution and performed hourly in situ measurements with a semi-volatile thermal desorption aerosol gas chromatograph (SV-TAG) at a rural site ("T3") located to the west of the urban center of Manaus, Brazil as part of the Green Ocean Amazon (GoAmazon2014/5) field campaign to measure intermediate-volatility and semi-volatile BVOCs and their oxidation products during the wet and dry seasons. We speciated and quantified 30 sesquiterpenes and 4 diterpenes with mean concentrations in the range 0.01-6.04 ngm-3 (1-670ppqv). We estimate that sesquiterpenes contribute approximately 14 and 12% to the total reactive loss of O3 via reaction with isoprene or terpenes during the wet and dry seasons, respectively. This is reduced from ~ 50-70 % for within-canopy reactive O3 loss attributed to the ozonolysis of highly reactive sesquiterpenes (e.g., ß-caryophyllene) that are reacted away before reaching our measurement site. We further identify a suite of their oxidation products in the gas and particle phases and explore their role in biogenic SOA formation in the central Amazon region. Synthesized authentic standards were also used to quantify gas- and particle-phase oxidation products derived from ß-caryophyllene. Using tracer-based scaling methods for these products, we roughly estimate that sesquiterpene oxidation contributes at least 0.4-5 % (median 1 %) of total submicron OA mass. However, this is likely a low-end estimate, as evidence for additional unaccounted sesquiterpenes and their oxidation products clearly exists. By comparing our field data to laboratory-based sesquiterpene oxidation experiments we confirm that more than 40 additional observed compounds produced through sesquiterpene oxidation are present in Amazonian SOA, warranting further efforts towards more complete quantification.

20.
Environ Sci Technol ; 51(20): 11867-11875, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-28858497

ABSTRACT

Secondary organic aerosols (SOA) are a major contributor to fine particulate mass and wield substantial influences on the Earth's climate and human health. Despite extensive research in recent years, many of the fundamental processes of SOA formation and evolution remain poorly understood. Most atmospheric aerosol models use gas/particle equilibrium partitioning theory as a default treatment of gas-aerosol transfer, despite questions about potentially large kinetic effects. We have conducted fundamental SOA formation experiments in a Teflon environmental chamber using a novel method. A simple chemical system produces a very fast burst of low-volatility gas-phase products, which are competitively taken up by liquid organic seed particles and Teflon chamber walls. Clear changes in the species time evolution with differing amounts of seed allow us to quantify the particle uptake processes. We reproduce gas- and aerosol-phase observations using a kinetic box model, from which we quantify the aerosol mass accommodation coefficient (α) as 0.7 on average, with values near unity especially for low volatility species. α appears to decrease as volatility increases. α has historically been a very difficult parameter to measure with reported values varying over 3 orders of magnitude. We use the experimentally constrained model to evaluate the correction factor (Φ) needed for chamber SOA mass yields due to losses of vapors to walls as a function of species volatility and particle condensational sink. Φ ranges from 1-4.


Subject(s)
Aerosols , Air Pollutants , Gases , Humans , Kinetics , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...