Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Res Sq ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38659878

ABSTRACT

Appendicular osteosarcoma was diagnosed and treated in a pair of littermate Rottweiler dogs, resulting in distinctly different clinical outcomes despite similar therapy within the context of a prospective, randomized clinical trial (NCI-COTC021/022). Histopathology, immunohistochemistry, mRNA sequencing, and targeted DNA hotspot sequencing techniques were applied to both dogs' tumors to define factors that could underpin their differential response to treatment. We describe the comparison of their clinical, histologic and molecular features, as well as those from a companion cohort of Rottweiler dogs, providing new insight into potential prognostic biomarkers for canine osteosarcoma.

2.
Vet Comp Oncol ; 22(1): 30-41, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38053317

ABSTRACT

A genomic understanding of the oncogenic processes and individual variability of human cancer has steadily fueled improvement in patient outcomes over the past 20 years. Mutations within tumour tissues are routinely assessed through clinical genomic diagnostic assays by academic and commercial laboratories to facilitate diagnosis, prognosis and effective treatment stratification. The application of genomics has unveiled a wealth of mutation-based biomarkers in canine cancers, suggesting that the transformative principles that have revolutionized human cancer medicine can be brought to bear in veterinary oncology. To advance clinical genomics and genomics-guided medicine in canine oncology, we have developed and validated a canine cancer next-generation sequencing gene panel for the identification of multiple mutation types in clinical specimens. With this panel, we examined the genomic landscapes of 828 tumours from 813 dogs, spanning 53 cancer types. We identified 7856 alterations, encompassing copy number variants, single nucleotide variants, indels and internal tandem duplications. Additionally, we evaluated the clinical utility of these alterations by incorporating a biomarker framework from comprehensive curation of primary canine literature and inferences from human cancer genomic biomarker literature and clinical diagnostics. Remarkably, nearly 90% of the cases exhibited mutations with diagnostic, prognostic or therapeutic implications. Our work represents a thorough assessment of genomic landscapes in a large cohort of canine cancers, the first of its kind for its comprehensive inclusion of multiple mutation types and structured annotation of biomarkers, demonstrating the clinical potential of leveraging mutation-based biomarkers in veterinary oncology.


Subject(s)
Dog Diseases , Neoplasms , Dogs , Humans , Animals , Dog Diseases/genetics , Neoplasms/genetics , Neoplasms/veterinary , Genomics , Mutation , Biomarkers, Tumor/genetics
3.
Nat Commun ; 13(1): 1477, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35304452

ABSTRACT

The epigenetic patterns that are established during early thymic development might determine mature T cell physiology and function, but the molecular basis and topography of the genetic elements involved are not fully known. Here we show, using the Cd4 locus as a paradigm for early developmental programming, that DNA demethylation during thymic development licenses a novel stimulus-responsive element that is critical for the maintenance of Cd4 gene expression in effector T cells. We document the importance of maintaining high CD4 expression during parasitic infection and show that by driving transcription, this stimulus-responsive element allows for the maintenance of histone H3K4me3 levels during T cell replication, which is critical for preventing de novo DNA methylation at the Cd4 promoter. A failure to undergo epigenetic programming during development leads to gene silencing during effector T cell replication. Our study thus provides evidence of early developmental events shaping the functional fitness of mature effector T cells.


Subject(s)
DNA Demethylation , DNA Methylation , CD4-Positive T-Lymphocytes/metabolism , Promoter Regions, Genetic/genetics
4.
Elife ; 112022 02 21.
Article in English | MEDLINE | ID: mdl-35188103

ABSTRACT

Mapping of allelic imbalance (AI) at heterozygous loci has the potential to establish links between genetic risk for disease and biological function. Leveraging multi-omics data for AI analysis and functional annotation, we discovered a novel functional risk variant rs1047643 at 8p23 in association with systemic lupus erythematosus (SLE). This variant displays dynamic AI of chromatin accessibility and allelic expression on FDFT1 gene in B cells with SLE. We further found a B-cell restricted super-enhancer (SE) that physically contacts with this SNP-residing locus, an interaction that also appears specifically in B cells. Quantitative analysis of chromatin accessibility and DNA methylation profiles further demonstrated that the SE exhibits aberrant activity in B cell development with SLE. Functional studies identified that STAT3, a master factor associated with autoimmune diseases, directly regulates both the AI of risk variant and the activity of SE in cultured B cells. Our study reveals that STAT3-mediated SE activity and cis-regulatory effects of SNP rs1047643 at 8p23 locus are associated with B cell deregulation in SLE.


Subject(s)
Genetic Predisposition to Disease , Lupus Erythematosus, Systemic , Alleles , Allelic Imbalance , B-Lymphocytes , Humans , Lupus Erythematosus, Systemic/genetics , Polymorphism, Single Nucleotide , STAT3 Transcription Factor/genetics
5.
PLoS Genet ; 16(12): e1008671, 2020 12.
Article in English | MEDLINE | ID: mdl-33290415

ABSTRACT

Cerebral cortical size and organization are critical features of neurodevelopment and human evolution, for which genetic investigation in model organisms can provide insight into developmental mechanisms and the causes of cerebral malformations. However, some abnormalities in cerebral cortical proliferation and folding are challenging to study in laboratory mice due to the absence of gyri and sulci in rodents. We report an autosomal recessive allele in domestic cats associated with impaired cerebral cortical expansion and folding, giving rise to a smooth, lissencephalic brain, and that appears to be caused by homozygosity for a frameshift in PEA15 (phosphoprotein expressed in astrocytes-15). Notably, previous studies of a Pea15 targeted mutation in mice did not reveal structural brain abnormalities. Affected cats, however, present with a non-progressive hypermetric gait and tremors, develop dissociative behavioral defects and aggression with age, and exhibit profound malformation of the cerebrum, with a 45% average decrease in overall brain weight, and reduction or absence of the ectosylvian, sylvian and anterior cingulate gyrus. Histologically, the cerebral cortical layers are disorganized, there is substantial loss of white matter in tracts such as the corona radiata and internal capsule, but the cerebellum is relatively spared. RNA-seq and immunohistochemical analysis reveal astrocytosis. Fibroblasts cultured from affected cats exhibit increased TNFα-mediated apoptosis, and increased FGFb-induced proliferation, consistent with previous studies implicating PEA15 as an intracellular adapter protein, and suggesting an underlying pathophysiology in which increased death of neurons accompanied by increased proliferation of astrocytes gives rise to abnormal organization of neuronal layers and loss of white matter. Taken together, our work points to a new role for PEA15 in development of a complex cerebral cortex that is only apparent in gyrencephalic species.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Brain Diseases/veterinary , Cat Diseases/genetics , Cerebral Cortex/metabolism , Loss of Function Mutation , Phosphoproteins/genetics , Animals , Apoptosis Regulatory Proteins/metabolism , Astrocytes/cytology , Astrocytes/metabolism , Brain Diseases/genetics , Brain Diseases/pathology , Cat Diseases/pathology , Cats , Cerebral Cortex/cytology , Cerebral Cortex/growth & development , Neurogenesis , Phosphoproteins/metabolism
6.
Infect Chemother ; 52(3): 335-344, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32537960

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus responsible for our recent coronavirus disease 2019 pandemic, is driving a lung immunopathology that strongly resembles a severe form of hypersensitivity pneumonitis (HP). A review of recent Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and SARS-CoV-2 medical reports, as well as described characteristics of HP, lead us to postulate a theory for SARS-CoV-2 severe disease. We propose that the novel SARS-CoV-2 can act as a trigger and substrate of an HP-like severe immune reaction especially in genetically vulnerable individuals in addition to those with immune senescence and dysregulation. Accordingly, the purpose of our letter is to shift the emphasis of concern surrounding immune activity from viral infection to an HP-like severe immune reaction. We review similarities in disease presentation between infection and allergy, relevant immunopathology, and outline phases of SARS-CoV-2 disease with perspectives on therapy and critical care. Altogether, the favored course is to begin treatments that address the disease at the earliest phase before immune dysregulation leading to uncontrolled pulmonary inflammation.

7.
Nat Commun ; 9(1): 3594, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30185805

ABSTRACT

The inheritance of gene expression patterns is dependent on epigenetic regulation, but the establishment and maintenance of epigenetic landscapes during T cell differentiation are incompletely understood. Here we show that two stage-specific Cd4 cis-elements, the previously characterized enhancer E4p and a novel enhancer E4m, coordinately promote Cd4 transcription in mature thymic MHC-II-specific T cells, in part through the canonical Wnt pathway. Specifically, E4p licenses E4m to orchestrate DNA demethylation by TET1 and TET3, which in turn poises the Cd4 locus for transcription in peripheral T cells. Cd4 locus demethylation is important for subsequent Cd4 transcription in activated peripheral T cells wherein these cis-elements become dispensable. By contrast, in developing thymocytes the loss of TET1/3 does not affect Cd4 transcription, highlighting an uncoupled event between transcription and epigenetic modifications. Together our findings reveal an important function for thymic cis-elements in governing gene expression in the periphery via a heritable epigenetic mechanism.


Subject(s)
CD4 Antigens/genetics , CD4-Positive T-Lymphocytes/physiology , Enhancer Elements, Genetic/physiology , Epigenesis, Genetic/physiology , Gene Expression Regulation/physiology , Animals , CD4 Antigens/metabolism , Cell Differentiation/genetics , Chimera , DNA Demethylation , DNA Methylation/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Female , Gene Knockout Techniques , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Thymus Gland/cytology , Thymus Gland/physiology
8.
BMC Genomics ; 18(1): 811, 2017 Oct 23.
Article in English | MEDLINE | ID: mdl-29061109

ABSTRACT

BACKGROUND: Targeted sequencing is a powerful tool with broad application in both basic and translational sciences. Relatively low on-target rates for most current targeted sequencing studies influence the required coverage and data quality for subsequent applications. RESULTS: We present an improved targeted sequencing method that uses two rounds of in solution hybridization with probes synthesized from genomic clone templates, termed dCATCH-Seq. Independent captures of two large continuous genomic regions across three cell types within the human major histocompatibility complex (MHC) that spans ~3.5 Mb and a ~250 kb region on chromosome 11 demonstrated that dCATCH-Seq was highly reproducible with ~95% capture specificity. Comprehensive analyses of sequencing data generated using the dCATCH-Seq approach also showed high accuracy in the detection of genetic variants and HLA typing. The double hybridization capture approach can also be coupled with bisulfite sequencing for DNA methylation profiling of both CpG and non-CpG sites. CONCLUSIONS: Altogether, dCATCH-Seq is a powerful and scalable targeted sequencing approach to investigate both genetic and epigenetic features.


Subject(s)
Epigenesis, Genetic , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Nucleic Acid Hybridization , Sequence Analysis, DNA/methods , Software , B-Lymphocytes/metabolism , DNA Methylation , Genetic Variation , Genome, Human , Humans
9.
Waste Biomass Valorization ; 8(7): 2247-2261, 2017.
Article in English | MEDLINE | ID: mdl-32010410

ABSTRACT

Conversion of lignocellulose to value-added products is normally focussed on fuel production via ethanol or heat. In this work, a techno-economic assessment of a biorefinery with three product streams, cellulose, hemicellulose and lignin is presented. Moreover, the techno-economic assessment is evaluated in the context of the supply chain through optimisation. A mixed integer linear program was developed to allow for flexible scenarios in order to determine effects of technological and pre-processing variations on the supply chain. The techno-economic and optimisation model integration was demonstrated on a case study in Scotland using woody biomass, either as sawnlogs or sawmill chips. It was established that sawmill chips is the preferred option, however sawnlogs became competitive once passive drying to 30% moisture content (wet basis) was considered. The flexibility of the modelling approach allowed for consideration of technology savings in the context of the supply chain, which can impact development choices.

10.
PLoS One ; 11(10): e0165488, 2016.
Article in English | MEDLINE | ID: mdl-27792787

ABSTRACT

DNA methylation at CpG sites is both heritable and influenced by environment, but the relative contributions of each to DNA methylation levels are unclear. We conducted a heritability analysis of CpG methylation in human CD4+ cells across 975 individuals from 163 families in the Genetics of Lipid-lowering Drugs and Diet Network (GOLDN). Based on a broad-sense heritability (H2) value threshold of 0.4, we identified 20,575 highly heritable CpGs among the 174,445 most variable autosomal CpGs (SD > 0.02). Tests for associations of heritable CpGs with genotype at 2,145,360 SNPs using 717 of 975 individuals showed that ~74% were cis-meQTLs (< 1 Mb away from the CpG), 6% of CpGs exhibited trans-meQTL associations (>1 Mb away from the CpG or located on a different chromosome), and 20% of CpGs showed no strong significant associations with genotype (based on a p-value threshold of 1e-7). Genes proximal to the genotype independent heritable CpGs were enriched for functional terms related to regulation of T cell activation. These CpGs were also among those that distinguished T cells from other blood cell lineages. Compared to genes proximal to meQTL-associated heritable CpGs, genotype independent heritable CpGs were moderately enriched in the same genomic regions that escape erasure during primordial germ cell development and could carry potential for generational transmission.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , DNA Methylation , Pedigree , CpG Islands/genetics , Female , Humans , Male , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics
11.
Front Genet ; 7: 23, 2016.
Article in English | MEDLINE | ID: mdl-26925097

ABSTRACT

DNA methylation levels vary markedly by cell-type makeup of a sample. Understanding these differences and estimating the cell-type makeup of a sample is an important aspect of studying DNA methylation. DNA from leukocytes in whole blood is simple to obtain and pervasive in research. However, leukocytes contain many distinct cell types and subtypes. We propose a two-stage model that estimates the proportions of six main cell types in whole blood (CD4+ T cells, CD8+ T cells, monocytes, B cells, granulocytes, and natural killer cells) as well as subtypes of T and B cells. Unlike previous methods that only estimate overall proportions of CD4+ T cell, CD8+ T cells, and B cells, our model is able to estimate proportions of naïve, memory, and regulatory CD4+ T cells as well as naïve and memory CD8+ T cells and naïve and memory B cells. Using real and simulated data, we are able to demonstrate that our model is able to reliably estimate proportions of these cell types and subtypes. In studies with DNA methylation data from Illumina's HumanMethylation450k arrays, our estimates will be useful both for testing for associations of cell type and subtype composition with phenotypes of interest as well as for adjustment purposes to prevent confounding in epigenetic association studies. Additionally, our method can be easily adapted for use with whole genome bisulfite sequencing (WGBS) data or any other genome-wide methylation data platform.

12.
Nat Immunol ; 16(7): 746-54, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26030024

ABSTRACT

During development, progenitor cells with binary potential give rise to daughter cells that have distinct functions. Heritable epigenetic mechanisms then lock in gene-expression programs that define lineage identity. Regulation of the gene encoding the T cell-specific coreceptor CD4 in helper and cytotoxic T cells exemplifies this process, with enhancer- and silencer-regulated establishment of epigenetic memory for stable gene expression and repression, respectively. Using a genetic screen, we identified the DNA-methylation machinery as essential for maintaining silencing of Cd4 in the cytotoxic lineage. Furthermore, we found a requirement for the proximal enhancer in mediating the removal of DNA-methylation marks from Cd4, which allowed stable expression of Cd4 in helper T cells. Our findings suggest that stage-specific methylation and demethylation events in Cd4 regulate its heritable expression in response to the distinct signals that dictate lineage 'choice' during T cell development.


Subject(s)
DNA Methylation/immunology , Gene Expression/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , CD4 Antigens/genetics , CD4 Antigens/immunology , CD4 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Cells, Cultured , Chromatin/genetics , Chromatin/immunology , Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/immunology , DNA (Cytosine-5-)-Methyltransferases/metabolism , Flow Cytometry , HEK293 Cells , Humans , Mice, Knockout , Mice, Transgenic , RNA Interference/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Helper-Inducer/metabolism , Transcription Factors/genetics , Transcription Factors/immunology , Transcription Factors/metabolism
13.
Ann Rheum Dis ; 74(10): 1875-81, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25990289

ABSTRACT

OBJECTIVE: Copy number variants (CNVs) have been associated with the risk to develop multiple autoimmune diseases. Our objective was to identify CNVs associated with the risk to develop psoriatic arthritis (PsA) using a genome-wide analysis approach. METHODS: A total of 835 patients with PsA and 1498 healthy controls were genotyped for CNVs using the Illumina HumanHap610 BeadChip genotyping platform. Genomic CNVs were characterised using CNstream analysis software and analysed for association using the χ(2) test. The most significant genomic CNV associations with PsA risk were independently tested in a validation sample of 1133 patients with PsA and 1831 healthy controls. In order to test for the specificity of the variants with PsA aetiology, we also analysed the association to a cohort of 822 patients with purely cutaneous psoriasis (PsC). RESULTS: A total of 165 common CNVs were identified in the genome-wide analysis. We found a highly significant association of an intergenic deletion between ADAMTS9 and MAGI1 genes on chromosome 3p14.1 (p=0.00014). Using the independent patient and control cohort, we validated the association between ADAMTS9-MAGI1 deletion and PsA risk (p=0.032). Using next-generation sequencing, we characterised the 26 kb associated deletion. Finally, analysing the PsC cohort we found a lower frequency of the deletion compared with the PsA cohort (p=0.0088) and a similar frequency to that of healthy controls (p>0.3). CONCLUSIONS: The present genome-wide scan for CNVs associated with PsA risk has identified a new deletion associated with disease risk and which is also differential from PsC risk.


Subject(s)
ADAM Proteins/genetics , Arthritis, Psoriatic/genetics , Cell Adhesion Molecules, Neuronal/genetics , Gene Deletion , ADAMTS9 Protein , Adaptor Proteins, Signal Transducing , Adult , Aged , Case-Control Studies , Cell Adhesion Molecules , DNA Copy Number Variations , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Guanylate Kinases , Humans , Male , Middle Aged , Psoriasis/genetics , Risk Factors
14.
PLoS Genet ; 11(2): e1004892, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25695801

ABSTRACT

Morphological variation in natural populations is a genomic test bed for studying the interface between molecular evolution and population genetics, but some of the most interesting questions involve non-model organisms that lack well annotated reference genomes. Many felid species exhibit polymorphism for melanism but the relative roles played by genetic drift, natural selection, and interspecies hybridization remain uncertain. We identify mutations of Agouti signaling protein (ASIP) or the Melanocortin 1 receptor (MC1R) as independent causes of melanism in three closely related South American species: the pampas cat (Leopardus colocolo), the kodkod (Leopardus guigna), and Geoffroy's cat (Leopardus geoffroyi). To assess population level variation in the regions surrounding the causative mutations we apply genomic resources from the domestic cat to carry out clone-based capture and targeted resequencing of 299 kb and 251 kb segments that contain ASIP and MC1R, respectively, from 54 individuals (13-21 per species), achieving enrichment of ~500-2500-fold and ~150x coverage. Our analysis points to unique evolutionary histories for each of the three species, with a strong selective sweep in the pampas cat, a distinctive but short melanism-specific haplotype in the Geoffroy's cat, and reduced nucleotide diversity for both ancestral and melanism-bearing chromosomes in the kodkod. These results reveal an important role for natural selection in a trait of longstanding interest to ecologists, geneticists, and the lay community, and provide a platform for comparative studies of morphological variation in other natural populations.


Subject(s)
Agouti Signaling Protein/genetics , Evolution, Molecular , Melanosis/genetics , Receptor, Melanocortin, Type 1/genetics , Selection, Genetic/genetics , Animals , Cats , Genetic Variation , Genetics, Population , Haplotypes , Mutation , Phylogeny , South America , Species Specificity
15.
PLoS One ; 9(10): e111756, 2014.
Article in English | MEDLINE | ID: mdl-25357200

ABSTRACT

Current target enrichment systems for large-scale next-generation sequencing typically require synthetic oligonucleotides used as capture reagents to isolate sequences of interest. The majority of target enrichment reagents are focused on gene coding regions or promoters en masse. Here we introduce development of a customizable targeted capture system using biotinylated RNA probe baits transcribed from sheared bacterial artificial chromosome clone templates that enables capture of large, contiguous blocks of the genome for sequencing applications. This clone adapted template capture hybridization sequencing (CATCH-Seq) procedure can be used to capture both coding and non-coding regions of a gene, and resolve the boundaries of copy number variations within a genomic target site. Furthermore, libraries constructed with methylated adapters prior to solution hybridization also enable targeted bisulfite sequencing. We applied CATCH-Seq to diverse targets ranging in size from 125 kb to 3.5 Mb. Our approach provides a simple and cost effective alternative to other capture platforms because of template-based, enzymatic probe synthesis and the lack of oligonucleotide design costs. Given its similarity in procedure, CATCH-Seq can also be performed in parallel with commercial systems.


Subject(s)
Genome, Human , Nucleic Acid Hybridization/methods , Sequence Analysis, DNA/methods , Templates, Genetic , Chromosomes, Human, Pair 11/genetics , Clone Cells , DNA Copy Number Variations , DNA Methylation/genetics , Humans , Repetitive Sequences, Nucleic Acid/genetics
16.
Circulation ; 130(7): 565-72, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-24920721

ABSTRACT

BACKGROUND: Genetic research regarding blood lipids has largely focused on DNA sequence variation; few studies have explored epigenetic effects. Genome-wide surveys of DNA methylation may uncover epigenetic factors influencing lipid metabolism. METHODS AND RESULTS: To identify whether differential methylation of cytosine-(phosphate)-guanine dinucleotides (CpGs) correlated with lipid phenotypes, we isolated DNA from CD4+ T cells and quantified the proportion of sample methylation at >450 000 CpGs by using the Illumina Infinium HumanMethylation450 Beadchip in 991 participants of the Genetics of Lipid Lowering Drugs and Diet Network. We modeled the percentage of methylation at individual CpGs as a function of fasting very-low-density lipoprotein cholesterol and triglycerides (TGs) by using mixed linear regression adjusted for age, sex, study site, cell purity, and family structure. Four CpGs (cg00574958, cg17058475, cg01082498, and cg09737197) in intron 1 of carnitine palmitoyltransferase 1A (CPT1A) were strongly associated with very-low low-density lipoprotein cholesterol (P=1.8×10(-21) to 1.6×10(-8)) and TG (P=1.6×10(-26) to 1.5×10(-9)). Array findings were validated by bisulfite sequencing. We performed quantitative polymerase chain reaction experiments demonstrating that methylation of the top CpG (cg00574958) was correlated with CPT1A expression. The association of cg00574958 with TG and CPT1A expression were replicated in the Framingham Heart Study (P=4.1×10(-14) and 3.1×10(-13), respectively). DNA methylation at CPT1A cg00574958 explained 11.6% and 5.5% of the variation in TG in the discovery and replication cohorts, respectively. CONCLUSIONS: This genome-wide epigenomic study identified CPT1A methylation as strongly and robustly associated with fasting very-low low-density lipoprotein cholesterol and TG. Identifying novel epigenetic contributions to lipid traits may inform future efforts to identify new treatment targets and biomarkers of disease risk.


Subject(s)
Carnitine O-Palmitoyltransferase/genetics , Epigenomics/methods , Fasting , Genome-Wide Association Study/methods , Lipoproteins, VLDL/genetics , Triglycerides/genetics , Adult , Anticholesteremic Agents/pharmacology , Anticholesteremic Agents/therapeutic use , Carnitine O-Palmitoyltransferase/blood , Cohort Studies , Fasting/blood , Female , Humans , Lipoproteins, VLDL/blood , Male , Middle Aged , Triglycerides/blood
17.
Genome Biol ; 14(9): R102, 2013.
Article in English | MEDLINE | ID: mdl-24034465

ABSTRACT

BACKGROUND: DNA methylation is an epigenetic modification that changes with age in human tissues, although the mechanisms and specificity of this process are still poorly understood. We compared CpG methylation changes with age across 283 human blood, brain, kidney, and skeletal muscle samples using methylation arrays to identify tissue-specific age effects. RESULTS: We found age-associated CpGs (ageCGs) that are both tissue-specific and common across tissues. Tissue-specific age CGs are frequently located outside CpG islands with decreased methylation, and common ageCGs show the opposite trend. AgeCGs are significantly associated with poorly expressed genes, but those with decreasing methylation are linked with higher tissue-specific expression levels compared with increasing methylation. Therefore, tissue-specific gene expression may protect against common age-dependent methylation. Distinguished from other tissues, skeletal muscle age CGs are more associated with expression, enriched near genes related to myofiber contraction, and closer to muscle-specific CTCF binding sites. Kidney-specific ageCGs are more increasingly methylated compared to other tissues as measured by affiliation with kidney-specific expressed genes. Underlying chromatin features also mark common and tissue-specific age effects reflective of poised and active chromatin states, respectively. In contrast with decreasingly methylated ageCGs, increasingly methylated ageCGs are also generally further from CTCF binding sites and enriched within lamina associated domains. CONCLUSIONS: Our data identified common and tissue-specific DNA methylation changes with age that are reflective of CpG landscape and suggests both common and unique alterations within human tissues. Our findings also indicate that a simple epigenetic drift model is insufficient to explain all age-related changes in DNA methylation.


Subject(s)
Chromatin/metabolism , DNA Methylation , Epigenesis, Genetic , Histones/metabolism , Repressor Proteins/blood , Adult , Aged , Aging , Binding Sites , Brain/metabolism , CCCTC-Binding Factor , Chromatin/chemistry , CpG Islands , Female , Histones/genetics , Humans , Kidney/metabolism , Male , Middle Aged , Muscle, Skeletal/metabolism , Oligonucleotide Array Sequence Analysis , Organ Specificity , Protein Binding , Protein Interaction Domains and Motifs , Repressor Proteins/genetics , Sequence Analysis, DNA , Tissue Array Analysis
18.
Dev Biol ; 340(2): 330-43, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20079729

ABSTRACT

Satellite cells are myogenic progenitors that reside on the myofiber surface and support skeletal muscle repair. We used mice in which satellite cells were detected by GFP expression driven by nestin gene regulatory elements to define age-related changes in both numbers of satellite cells that occupy hindlimb myofibers and their individual performance. We demonstrate a reduction in satellite cells per myofiber with age that is more prominent in females compared to males. Satellite cell loss also persists with age in myostatin-null mice regardless of increased muscle mass. Immunofluorescent analysis of isolated myofibers from nestin-GFP/Myf5(nLacZ/+) mice reveals a decline with age in the number of satellite cells that express detectable levels of betagal. Nestin-GFP expression typically diminishes in primary cultures of satellite cells as myogenic progeny proliferate and differentiate, but GFP subsequently reappears in the Pax7(+) reserve population. Clonal analysis of sorted GFP(+) satellite cells from hindlimb muscles shows heterogeneity in the extent of cell density and myotube formation among colonies. Reserve cells emerge primarily within high-density colonies, and the number of clones that produce reserve cells is reduced with age. Thus, satellite cell depletion with age could be attributed to a reduced capacity to generate a reserve population.


Subject(s)
Aging , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/physiology , Stem Cells/cytology , Stem Cells/physiology , Animals , Cell Separation , Cells, Cultured , Clone Cells , Cohort Studies , Female , Fluorescent Antibody Technique, Indirect , Fluorescent Dyes/metabolism , Green Fluorescent Proteins/metabolism , Heterozygote , Immunohistochemistry , Indoles/metabolism , Intermediate Filament Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Nerve Tissue Proteins/metabolism , Nestin , PAX7 Transcription Factor/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Transgenes/genetics , beta-Galactosidase/metabolism
19.
Blood Cells Mol Dis ; 43(2): 202-10, 2009.
Article in English | MEDLINE | ID: mdl-19442542

ABSTRACT

The serine protease thrombin is generated from its precursor, prothrombin, in the coagulation cascade and plays a central role in fibrin deposition and platelet activation mediated through the protease activated receptors. Knockdown of prothrombin in the zebrafish was previously shown to recapitulate the phenotype observed in prothrombin knockout mice, such as an absence of blood pericardial edema, and hemorrhage. However, the role of thrombin during embryogenesis is not fully understood. To find genes affected by potential thrombin signaling in embryogenesis before blood circulation, microarray analysis was performed using total RNA prepared from antisense-injected, knockdown embryos versus mismatch-injected at 20 h post fertilization. A total of 63 upregulated and downregulated genes were identified with duplicate microarrays using dye reversal and a two-fold difference limitation. Real time RT-PCR for 10 selected genes identified by the microarray confirmed the expression changes in these genes. One particular gene, phlda3, was at least eleven fold upregulated, and in situ hybridization revealed expansion of phlda3 expression in the central nervous system, branchial arches, and head endoderm in knockdown embryos. The identification of these genes regulated by thrombin according to microarray analysis should provide a greater understanding of the effects of thrombin activity in the early vertebrate embryo.


Subject(s)
Gene Expression Regulation, Developmental , Prothrombin/genetics , Thrombin/metabolism , Zebrafish/embryology , Zebrafish/genetics , Animals , Down-Regulation , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Gene Knockdown Techniques , Oligonucleotide Array Sequence Analysis , Oligonucleotides, Antisense/genetics , Thrombin/antagonists & inhibitors , Up-Regulation
20.
Dev Dyn ; 238(4): 1001-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19301399

ABSTRACT

Satellite cells are skeletal muscle stem cells that provide myogenic progeny for myofiber growth and repair. Temporal expression of muscle regulatory factors (MRFs) and the paired box transcription factor Pax7 defines characteristic phases of proliferation (Pax7(+)/MyoD(+)/myogenin(-)) and differentiation (Pax7(-)/MyoD(+)/myogenin(+)) during myogenesis of satellite cells. Here, using bromodeoxyuridine (BrdU) labeling and triple immunodetection, we analyzed expression patterns of Pax7 and the MRFs MyoD, Myf5, or myogenin within S phase myoblasts prepared from posthatch chicken muscle. Essentially, all BrdU incorporation was restricted to Pax7(+) cells, of which the majority also expressed MyoD. The presence of a minor BrdU(+)/Pax7(+)/myogenin(+) population in proliferation stage cultures suggests that myogenin up-regulation is alone insufficient for terminal differentiation. Myf5 was detected strictly within Pax7(+) cells and decreased during S phase while MyoD presence persisted in cycling cells. This study provides novel data in support of a unique role for Myf5 during posthatch myogenesis.


Subject(s)
Chickens/growth & development , Chickens/metabolism , Muscle Development , Myogenic Regulatory Factor 5/metabolism , PAX7 Transcription Factor/metabolism , S Phase , Animals , Cell Proliferation , Gene Expression Regulation, Developmental , In Vitro Techniques , Myogenic Regulatory Factor 5/genetics , PAX7 Transcription Factor/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...