Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Mar Environ Res ; 196: 106402, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402778

ABSTRACT

Cephalopods receive a great deal of attention due to their socioeconomically important fisheries and aquaculture industries as well their unique biological features. However, basic information about their physiological responses under stress conditions is lacking. This study investigated the impact of a simple stressor, exercise to exhaustion, on the activity levels of antioxidant enzymes and the concentrations of molecules involved in oxidative stress response in the pale octopus (Octopus pallidus). Eight biochemical assays were measured in the humoral (plasma) and cellular (hemocyte) components of O. pallidus haemolymph, the invertebrate analogue to vertebrate blood. Overall, exercise resulted in an increase in activity of plasma catalase (CAT) and glutathione-S-transferase (GST) and the decrease in activity of plasms glutathione reductase (GR). In the hemocytes, the exercise elicited a different response, with a reduction in the activity of superoxide dismutase (SOD), GR, and glutathione peroxidase (GPX) and a reduction in nitric oxide (NO) concentration. Malondialdehyde (MDA) activity was similar in the plasma and haemocytes in control and exercised treatments, indicating that exercise did not induce lipid peroxidation. These results provide an important baseline for understanding oxidative stress in octopus, with exercise to exhaustion serving as a simple stressor which will ultimately inform our ability to detect and understand physiological responses to more complex stressors.


Subject(s)
Octopodiformes , Animals , Octopodiformes/metabolism , Antioxidants , Oxidative Stress , Catalase/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Lipid Peroxidation , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Glutathione/metabolism
2.
Mar Pollut Bull ; 199: 115480, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37839912

ABSTRACT

High-intensity, impulsive sounds are used to locate oil and gas reserves during seismic exploration of the seafloor. The impacts of this noise pollution on the health and mortality of marine invertebrates are not well known, including the silverlip pearl oyster (Pinctada maxima), which comprises one of the world's last remaining significant wildstock pearl oyster fisheries, in northwestern Australia. We exposed ≈11,000 P. maxima to a four-day experimental seismic survey, plus one vessel-control day. After exposure, survival rates were monitored throughout a full two-year production cycle, and the number and quality of pearls produced at harvest were assessed. Oysters from two groups, on one sampling day, exhibited reduced survival and pearl productivity compared to controls, but 14 other groups receiving similar or higher exposure levels did not. We therefore found no conclusive evidence of an impact of the seismic source survey on oyster mortality or pearl production.


Subject(s)
Pinctada , Animals , Noise , Sound , Australia , Fisheries
3.
Environ Pollut ; 309: 119699, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35787424

ABSTRACT

Anthropogenic aquatic noise is recognised as an environmental pollutant with the potential to negatively affect marine organisms. Seismic surveys, used to explore subseafloor oil reserves, are a common source of aquatic noise that have garnered attention due to their intense low frequency inputs and their frequent spatial overlap with coastal fisheries. Commercially important Southern Rock Lobster (Jasus edwardsii) adults have previously shown sensitivity to signals from a single seismic air gun. Here, the sensitivity of J. edwardsii juveniles and puerulus to the signals of a full-scale seismic survey were evaluated to determine if early developmental stages were affected similarly to adults, and the range of impact. To quantify impact, lobster mortality rates, dorsoventral righting reflex and progression through moult cycle were evaluated following exposure. Exposure did not result in mortality in either developmental stage, however, air gun signals caused righting impairment to at least 500 m in lobsters sampled immediately following exposure, as had previously been reported in adults with corresponding sensory system damage following exposure. Impairment resulting from close range (0 m) exposure appeared to be persistent, as previously reported in adults, whereas juveniles exposed at a more distant range (500 m) showed recovery, indicating that exposure at a range of 500 m may not cause lasting impairment to righting. Intermoult duration was (time between moults) significantly increased in juveniles exposed at 0 m from the source, indicating the potential for slowed development, growth, and physiological stress. These results demonstrate that exposure to seismic air gun signals have the potential to negatively impact early life history stages of Southern Rock Lobsters. The similarity of both the impacts and the sound exposure levels observed here compared to previous exposure using a single air gun offer validation for the approach, which opens the potential for accessible field-based experimental work into the impact of seismic surveys on marine invertebrates.


Subject(s)
Palinuridae , Animals , Larva/physiology , Noise , Palinuridae/physiology , Reflex, Righting , Seafood
4.
J Cell Biol ; 220(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34633413

ABSTRACT

The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation. In zebrafish, which possess duplicated cavin4 paralogs, Cavin4b was shown to directly interact with the T-tubule-associated BAR domain protein Bin1. Loss of both Cavin4a and Cavin4b caused aberrant accumulation of interconnected caveolae within the T-tubules, a fragmented T-tubule network enriched in Caveolin-3, and an impaired Ca2+ response upon mechanical stimulation. We propose a role for Cavin4 in remodeling the T-tubule membrane early in development by recycling caveolar components from the T-tubule to the sarcolemma. This generates a stable T-tubule domain lacking caveolae that is essential for T-tubule function.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Nerve Tissue Proteins/metabolism , Sarcolemma/metabolism , Tumor Suppressor Proteins/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Caveolae/metabolism , Cell Line , Embryo, Nonmammalian/metabolism , Imaging, Three-Dimensional , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/ultrastructure , Muscle, Skeletal/ultrastructure , Protein Binding , Sarcolemma/ultrastructure , Zebrafish/embryology
5.
Environ Pollut ; 267: 115478, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33254599

ABSTRACT

Staotcysts, the mechanosensory organs common to many marine invertebrates, have shown sensitivity to aquatic noise. Previously, rock lobsters (Jasus edwardsii) from a remote site with little exposure to anthropogenic noise incurred persistent damage to the statocyst and righting reflex following exposure to seismic air gun signals. Here, J. edwardsii collected from a site subject to high levels of anthropogenic noise were exposed to an equivalent seismic air gun signal regime as the previous study of noise-naïve lobsters. Following exposure, both control and exposed treatments were found to have damage to the statocyst equivalent to that of noise-naïve lobsters following seismic exposure, which led to the conclusion that the damage was pre-existing and not exacerbated by seismic exposure. The source of the damage in the lobsters in this study could not be ascertained, but the soundscape comparisons of the collection sites showed that the noisy site had a 5-10 dB greater level of noise, equivalent to a 3-10 times greater intensity, in the 10-700 Hz range than was found at the remote collection site. In addition to the lack of further damage following seismic exposure, no disruption to the righting reflex was observed. Indeed, compared to the noise naïve lobsters, the lobsters here demonstrated an ability to cope with or adapt to the mechanosensory damage, indicating a need for better understanding of the ecological impacts of the damage caused by low frequency noise on marine organisms. More broadly, this study raises historical exposure to noise as a previously unrecognised but vitally important consideration for studies of aquatic noise.


Subject(s)
Noise , Palinuridae , Animals , Environment , Noise/adverse effects , Seafood
6.
Proc Biol Sci ; 286(1907): 20191424, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31337309

ABSTRACT

The effects of anthropogenic aquatic noise on marine invertebrates are poorly understood. We investigated the impact of seismic surveys on the righting reflex and statocyst morphology of the palinurid rock lobster, Jasus edwardsii, using field-based exposure to air gun signals. Following exposure equivalent to a full-scale commercial assay passing within 100-500 m, lobsters showed impaired righting and significant damage to the sensory hairs of the statocyst. Reflex impairment and statocyst damage persisted over the course of the experiments-up to 365 days post-exposure and did not improved following moulting. These results indicate that exposure to air gun signals caused morphological damage to the statocyst of rock lobsters, which can in turn impair complex reflexes. This damage and impairment adds further evidence that anthropogenic aquatic noise has the potential to harm invertebrates, necessitating a better understanding of possible ecological and economic impacts.


Subject(s)
Noise/adverse effects , Palinuridae/physiology , Acoustics , Animals , Female , Firearms , Palinuridae/radiation effects , Reflex, Righting/physiology , Reflex, Righting/radiation effects , Sense Organs/physiology , Sense Organs/radiation effects
7.
Fish Shellfish Immunol ; 89: 660-671, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30902723

ABSTRACT

Lobsters are fished world-wide due to their status as a high value, luxury seafood. A large proportion of the product is sold via live export, with lobsters subject to a range of stressors during holding post-capture. Improving the current understanding of the immune response to these stressors assists in improving efficiency and reducing loss in the chain between capture and consumption. In this study, the immune status of four treatment groups of Southern Rock Lobster (Jasus edwardsii) were studied: controls recently landed from a fishing boat, lobsters displaying advanced shell necrosis, lobsters in an unexplained moribund state and lobsters held in a processing facility for 10 weeks in standard conditions (i.e. high density, fasted). A total of 15 immune parameters and 19 haemolymph biochemical parameters were assayed. Phenoloxidase activity was only sporadically observed in haemocyte lysate and was consistently observed at a low level in the plasma with no difference between treatments for either. Haemocyte lysate prophenoloxidase activity was detected in most individuals, with no differences found between treatments. Prophenoloxidase in the plasma showed the highest level of activity, with the shell necrosis treatment demonstrating an elevated activity level relative to the other three treatments. Cell viability was not affected in any treatment. Lobsters with shell necrosis had a reduced capacity for phagocytosis, a significantly higher total haemocyte count, fewer hyalinocytes and more granulocytes and semigranulocytes. Fasted lobsters showed an opposite shift, with significantly more hyalinocytes compared to the other treatments and very few granulocytes and semigranulocytes. The balance of a range electrolytes, minerals metabolites and enzymes were affected in shell necrosis and fasted treatments, raising them as potential markers for immunocompromised lobsters. Multivariate analysis of all assayed parameters showed that all individuals in the necrosis treatment showed a similar, distinct immune response and that the fasted treatment, along with one control and one moribund individual, showed a separate intermediate response. The remainder of the control and moribund lobsters demonstrated a distinct "non-response" in comparison. These results offer a characterisation of the physiological response to common challenges during post-capture holding of rock lobsters, demonstrating the differential response to pathogenic bacterial infection, long term fasting, non-specific moribundity and the stress of capture and transport.


Subject(s)
Hemocytes/enzymology , Hemolymph/chemistry , Immunity, Innate , Palinuridae/immunology , Animals , Female , Male , Stress, Physiological
8.
Proc Natl Acad Sci U S A ; 114(40): E8537-E8546, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28923925

ABSTRACT

Seismic surveys map the seabed using intense, low-frequency sound signals that penetrate kilometers into the Earth's crust. Little is known regarding how invertebrates, including economically and ecologically important bivalves, are affected by exposure to seismic signals. In a series of field-based experiments, we investigate the impact of exposure to seismic surveys on scallops, using measurements of physiological and behavioral parameters to determine whether exposure may cause mass mortality or result in other sublethal effects. Exposure to seismic signals was found to significantly increase mortality, particularly over a chronic (months postexposure) time scale, though not beyond naturally occurring rates of mortality. Exposure did not elicit energetically expensive behaviors, but scallops showed significant changes in behavioral patterns during exposure, through a reduction in classic behaviors and demonstration of a nonclassic "flinch" response to air gun signals. Furthermore, scallops showed persistent alterations in recessing reflex behavior following exposure, with the rate of recessing increasing with repeated exposure. Hemolymph (blood analog) physiology showed a compromised capacity for homeostasis and potential immunodeficiency, as a range of hemolymph biochemistry parameters were altered and the density of circulating hemocytes (blood cell analog) was significantly reduced, with effects observed over acute (hours to days) and chronic (months) scales. The size of the air gun had no effect, but repeated exposure intensified responses. We postulate that the observed impacts resulted from high seabed ground accelerations driven by the air gun signal. Given the scope of physiological disruption, we conclude that seismic exposure can harm scallops.


Subject(s)
Acoustics , Behavior, Animal , Environmental Exposure , Noise , Pecten/physiology , Sound , Stress, Physiological , Animals
9.
Nat Ecol Evol ; 1(7): 195, 2017 Jun 22.
Article in English | MEDLINE | ID: mdl-28812592

ABSTRACT

Zooplankton underpin the health and productivity of global marine ecosystems. Here we present evidence that suggests seismic surveys cause significant mortality to zooplankton populations. Seismic surveys are used extensively to explore for petroleum resources using intense, low-frequency, acoustic impulse signals. Experimental air gun signal exposure decreased zooplankton abundance when compared with controls, as measured by sonar (~3-4 dB drop within 15-30 min) and net tows (median 64% decrease within 1 h), and caused a two- to threefold increase in dead adult and larval zooplankton. Impacts were observed out to the maximum 1.2 km range sampled, which was more than two orders of magnitude greater than the previously assumed impact range of 10 m. Although no adult krill were present, all larval krill were killed after air gun passage. There is a significant and unacknowledged potential for ocean ecosystem function and productivity to be negatively impacted by present seismic technology.

10.
Mar Pollut Bull ; 125(1-2): 146-156, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28807415

ABSTRACT

There is a critical knowledge gap regarding the impacts of seismic air gun signals on the physiology of adult crustaceans. We conducted four controlled field experiments to examine the impact of seismic acoustic signals on spiny lobster, Jasus edwardsii. Seismic air gun exposure suppressed total haemocyte count (THC) for up to 120days post-exposure, suggesting a chronic negative impact of immune competency. THC levels after 365days post-exposure, were elevated two fold, potentially indicating an immune response to infection. Haemolymph refractive index was reduced after 120days post exposure in one experiment, suggesting a chronic impairment of nutritional condition. There was no effect of air gun exposure on 24 haemolymph biochemical parameters, hepatopancreas index or survival. Collectively these results indicate that the biochemical haematological homeostasis of J. edwardsii is reasonably resilient to seismic acoustic signals, however, air gun exposure may negatively influence the lobster's nutritional condition and immunological capacity.


Subject(s)
Hemolymph/chemistry , Hemolymph/physiology , Noise/adverse effects , Palinuridae/physiology , Acoustics/instrumentation , Animal Nutritional Physiological Phenomena , Animals , Ecosystem , Environment , Enzymes/metabolism , Hemocytes , Hemolymph/cytology , Hepatopancreas/physiology , Hydrogen-Ion Concentration , Refractometry
11.
Sci Rep ; 6: 22723, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26947006

ABSTRACT

Marine seismic surveys are used to explore for sub-seafloor oil and gas deposits. These surveys are conducted using air guns, which release compressed air to create intense sound impulses, which are repeated around every 8-12 seconds and can travel large distances in the water column. Considering the ubiquitous worldwide distribution of seismic surveys, the potential impact of exposure on marine invertebrates is poorly understood. In this study, egg-bearing female spiny lobsters (Jasus edwardsii) were exposed to signals from three air gun configurations, all of which exceeded sound exposure levels (SEL) of 185 dB re 1 µPa(2) · s. Lobsters were maintained until their eggs hatched and the larvae were then counted for fecundity, assessed for abnormal morphology using measurements of larval length and width, tested for larval competency using an established activity test and measured for energy content. Overall there were no differences in the quantity or quality of hatched larvae, indicating that the condition and development of spiny lobster embryos were not adversely affected by air gun exposure. These results suggest that embryonic spiny lobster are resilient to air gun signals and highlight the caution necessary in extrapolating results from the laboratory to real world scenarios or across life history stages.


Subject(s)
Embryonic Development , Larva/growth & development , Palinuridae/embryology , Palinuridae/growth & development , Sound , Animals , Female , Fertility , Palinuridae/anatomy & histology , Palinuridae/physiology
12.
J Comp Physiol B ; 184(4): 497-512, 2014 May.
Article in English | MEDLINE | ID: mdl-24604291

ABSTRACT

We explored the integrated role of dietary specialization and feeding periodicity on the response of the gastrointestinal tract of teleosts fishes to short-term (7-10 days) fasting and refeeding. Fasted and fed herbivorous grass carp (Ctenopharyngodon idella), omnivorous channel catfish (Ictalurus punctatus), and carnivorous largemouth bass (Micropterus salmoides) were compared for digestive organ masses, intestinal morphology, gastrointestinal pH, and the specific activities and total intestinal capacities of the intestinal hydrolases aminopeptidase (APN) and maltase and intestinal nutrient transporters. All three species experience intestinal hypertrophy with feeding as noted by significant increases in enterocyte dimensions. Of the three, only I. punctatus experienced a postprandial increase in intestinal length, and only C. idella experienced significant modulation of intestinal microvillus length. Feeding resulted in acidification of the stomachs of I. punctatus and M. salmoides. Predicted to exhibit a relatively modest set of postprandial responses because of their more frequent feeding habits, C. idella only experienced increases in APN and maltase activity with feeding and no significant regulation of nutrient uptake. Significant regulation of hydrolase activities and nutrient uptake were exhibited by I. punctatus and M. salmoides, with I. punctatus experiencing the most comprehensive set of responses. As predicted by food habits, there was an interspecific gradient in intestinal length and glucose uptake extending from longer intestines and greater glucose uptake for the herbivorous C. idella, intermediate lengths and glucose uptake for the omnivorous I. punctatus, and shorter intestines and reduced glucose uptake for the carnivorous M. salmoides. Among teleosts fishes, short episodes of fasting lead to significant alterations in intestinal form and function that are rapidly restored with feeding.


Subject(s)
Bass/physiology , Carps/physiology , Fasting/physiology , Ictaluridae/physiology , Animals , Enzymes/physiology , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/cytology , Gastrointestinal Tract/physiology , Hydrogen-Ion Concentration , Postprandial Period/physiology , Time Factors
13.
J Comp Physiol B ; 181(5): 603-13, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21212962

ABSTRACT

The lack of a stomach is not uncommon amongst teleost fishes, yet our understanding of this reductive specialisation is lacking. The absence of a stomach does not restrict trophic preference, resulting in fishes with very similar alimentary morphology capable of digesting differing diets. We examined the digestive biochemistry of four beloniform fishes: two herbivorous halfbeaks (Hemiramphidae) and two carnivorous needlefish (Belonidae) to determine how these fishes digest their respective diets with their simple, short gut. We found that although the halfbeaks showed significantly greater α-amylase activity than that of the needlefish (P < 0.01), trypsin, lipase, aminopeptidase and maltase activity were not substantially different between the two families. We also found that habitat (freshwater vs. marine) appears to play a significant role in digestive capability, as the two freshwater taxa and the two marine taxa were significantly different (ANOSIM; dietary Gobal R = 0.544, P = 0.001, habitat Global R = 0.437, P = 0.001), despite their phyletic and dietary similarities. Our findings offer partial support for the adaptive modulation hypothesis, support the Plug-Flow Reactor model of digestion in herbivorous halfbeaks and also support the compartmental model of digestion but suggest that another model is required to describe stomachless carnivorous needlefish.


Subject(s)
Diet , Fishes/physiology , Gastrointestinal Tract/enzymology , Adaptation, Physiological , Animals , Beloniformes/physiology , Digestion/physiology , Ecosystem , Fresh Water , Glycoside Hydrolases/metabolism , Lipid Metabolism , Models, Biological , Peptide Hydrolases/metabolism , Seawater
14.
Article in English | MEDLINE | ID: mdl-20884371

ABSTRACT

Most young fishes lack the ability to function as herbivores, which has been attributed to two aspects of the digestive system: elevated nitrogen demand and a critical gut capacity. We compared the digestive morphology and biochemistry of two size classes of the marine herbivore Hyporhamphus regularis ardelio, pre-ontogenetic trophic shift (pre-OTS, <100mm) and post-ontogenetic trophic shift (post-OTS, >100mm), to determine what limits the onset of herbivory and how their digestive processes fit with current models of digestion. Two gut-somatic indices comparing gut length to body length (relative gut length) and body mass (Zihler's Index) demonstrated a significant decrease (RGL 0.59→0.49, P<0.01; ZI 3.24→2.44, P<0.01) in gut length relative to body size. There was little difference in enzyme activity between the two classes, with juveniles showing similar levels of carbohydrase and lipase and less protease compared with adults, indicating that juveniles did not preferentially target nitrogen and were as capable of digesting an herbivorous diet. These findings suggest that herbivory in this fish is not limited by the function of the post-oesophageal digestive tract, but rather the ability of the pharyngeal mill to mechanically process plants. Our findings offer partial support for the current model of stomachless digestion, indicating that further refinement may be necessary.


Subject(s)
Diet/veterinary , Digestive System/anatomy & histology , Digestive System/enzymology , Perciformes/metabolism , Animals , Body Weight , Digestive System/growth & development , Perciformes/classification
15.
J Morphol ; 270(10): 1155-65, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19378267

ABSTRACT

Belonidae are unusual in that they are carnivorous but lack a stomach and have a straight, short gut. To develop a functional morphological model for this unusual system the gut contents and alimentary tract morphology of Tylosurus gavialoides and Strongylura leiura ferox were investigated. The posterior orientation of the majority of the pharyngeal teeth supports the swallowing of whole large prey, but not their mastication. Mucogenic cells are abundant in the mucosa lining, particularly the esophagus, and their secretions are likely to protect the gut lining from damage while lubricating passage of the prey. Esophagus, anterior intestine, posterior intestine, and rectum all have highly reticulate mucosae. The anterior three gut sections are distensible to accommodate the passage of prey. However, following ingestion large prey are passed to the highly distensible posterior intestine where they rest head first against the ileorectal valve. Alimentary pH ranges from neutral to weakly acidic. Fish prey is digested head first with the head being largely digested while the remainder of the body is still intact. The nondistensibility of the rectum and the small aperture provided by the ileorectal valve suggest the products of intestinal digestion are either small particulates or fluids that pass into rectum where they are absorbed.


Subject(s)
Beloniformes/anatomy & histology , Digestion , Esophagus/anatomy & histology , Intestinal Mucosa/anatomy & histology , Intestines/anatomy & histology , Animals , Beloniformes/physiology , Esophagus/ultrastructure , Intestinal Mucosa/ultrastructure , Intestines/ultrastructure , Microscopy, Electron, Scanning
16.
J Morphol ; 270(3): 357-66, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19107822

ABSTRACT

To assess how tooth microstructure and composition might facilitate the pharyngeal mill mechanism of halfbeaks, apatite structure and iron content were determined by scanning electron microscopy and energy dispersive X-ray analysis for Hyporhamphus regularis ardelio, Arrhamphus sclerolepis krefftii, and Hemiramphus robustus. Iron was present in developing teeth and was concentrated along the shearing edge of spatulate incisiform teeth, which dominate the occlusive wear zone in all three species. A model based on tooth structure and wear rate is proposed to explain how halfbeaks maintain a fully functional occlusion zone throughout growth and consequent tooth addition and replacement. Replacement teeth erupt and wear rapidly so that a constant occlusion plane is always present. Iron within the tooth tissue reduces the wear rate of the cutting edge while simultaneously maintaining its sharpness and efficiency.


Subject(s)
Branchial Region/anatomy & histology , Smegmamorpha/anatomy & histology , Tooth/ultrastructure , Animals , Iron/analysis , Microscopy, Electron, Scanning , Tooth/chemistry
17.
J Exp Biol ; 209(Pt 19): 3708-18, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16985188

ABSTRACT

A common feature of animal locomotion is its organization into gaits with distinct patterns of movement and propulsor use for specific speeds. In terrestrial vertebrates, limb gaits have been extensively studied in diverse taxa and gait transitions have been shown to provide efficient locomotion across a wide range of speeds. In contrast, examination of gaits in fishes has focused on axial gaits and the transition between synchronous paired fin locomotion and axial propulsion. Because many fishes use their pectoral fins as their primary propulsors, we aimed to examine more broadly the use of pectoral fin gaits in locomotion. We used juvenile reef fishes in these experiments because their swimming could be recorded readily across a wide range of Reynolds numbers, which we thought would promote gait diversity. Based on previous work in larval fishes, we hypothesized that juveniles have alternating pectoral fin movements rather than the synchronous, or in-phase, coordination pattern of adults. In flow tank swim studies, we found that juvenile sapphire damselfish Pomacentrus pavo used two fin gaits during steady swimming. Below approximately 3 BL s(-1), P. pavo primarily swam with alternating fin strokes 180 degrees out of phase with one another. At speeds in the range of 3-4 BL s(-1), they performed a gait transition to synchronous fin coordination. Between approximately 4 and 8 BL s(-1), P. pavo primarily beat their fins synchronously. At around 8 BL s(-1) there was another gait transition to body-caudal fin swimming, in which the pectoral fins were tucked against the body. We suggest that the transition from alternating to synchronous fin coordination occurs due to mechanical limits of gait performance rather than to energy efficiency, stability or transitions in hydrodynamic regime. To determine whether this gait transition was species-specific, we surveyed pectoral fin locomotion in juveniles from 11 species in three reef fish families (Pomacentridae, Labridae and Scaridae). We found that this gait transition occurred in every species examined, suggesting that it may be a common behavior of juvenile reef fishes. Greater inclusion of early life history stages in the study of fin-based locomotion should significantly enhance and inform the growing body of work on these behaviors.


Subject(s)
Animal Structures/physiology , Gait/physiology , Perciformes/physiology , Swimming/physiology , Analysis of Variance , Animals , Biomechanical Phenomena , Micronesia , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...