Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Clin Med ; 12(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36835812

ABSTRACT

Recent studies suggest that opioids have a role in the progression of HNSCC mediated by mu opioid receptors (MOR), however, the effects of their activation or blockage remains unclear. Expression of MOR-1 was explored in seven HNSCC cell lines using Western blotting (WB). XTT cell proliferation and cell migration assays were performed on four selected cell lines (Cal-33, FaDu, HSC-2, and HSC-3), treated with opiate receptor agonist (morphine), antagonist (naloxone), alone and combined with cisplatin. All four selected cell lines display an increased cell proliferation and upregulation of MOR-1 when exposed to morphine. Furthermore, morphine promotes cell migration, while naloxone inhibits it. The effects on cell signaling pathways were analyzed using WB, demonstrating morphine activation of AKT and S6, key proteins in the PI3K/AKT/mTOR axis. A significant synergistic cytotoxic effect between cisplatin and naloxone in all cell lines is observed. In vivo studies of nude mice harboring HSC3 tumor treated with naloxone demonstrate a decrease in tumor volume. The synergistic cytotoxic effect between cisplatin and naloxone is observed in the in vivo studies as well. Our findings suggest that opioids may increase HNSCC cell proliferation via the activation of the PI3K/Akt/mTOR signaling pathway. Moreover, MOR blockage may chemo-sensitize HNSCC to cisplatin.

2.
Biomaterials ; 276: 121039, 2021 09.
Article in English | MEDLINE | ID: mdl-34352627

ABSTRACT

Titanium dioxide (TiO2) is a frequently used biomaterial, particularly in orthopedic and dental implants, and it is considered an inert and benign compound. This has resulted in toxicological scrutiny for TiO2 in the past decade, with numerus studies showing potential pathologic downstream effects. Herein we describe case report of a 77-year-old male with subacute CNS dysfunction, secondary to breakdown of a titanium-based carotid stent and leading to blood levels 1000 times higher (3 ppm) than the reported normal. We prospectively collected tissues adjacent to orthopedic implants and found a positive correlation between titanium concentration and time of implant in the body (r = 0.67, p < 0.02). Rats bearing titanium implants or intravascularly treated with TiO2 nanoparticles (TiNP) exhibited memory impairments. A human blood-brain barrier (BBB) in-vitro model exposed to TiNP showed paracellular leakiness, which was corroborated in-vivo with the decrease of key BBB transcripts in isolated blood vessels from hippocampi harvested from TiNP-treated mice. Titanium particles rapidly internalized into brain-like endothelial cells via caveolae-mediated endocytosis and macropinocytosis and induced pro-inflammatory reaction with increased expression of pro-inflammatory genes and proteins. Immune reaction was mediated partially by IL-1R and IL-6. In summary, we show that high levels of titanium accumulate in humans adjacent to orthopedic implants, and our in-vivo and in-vitro studies suggest it may be neurotoxic.


Subject(s)
Nanoparticles , Titanium , Animals , Endothelial Cells , Humans , Male , Mice , Prospective Studies , Prostheses and Implants/adverse effects , Rats , Titanium/toxicity
3.
J Mol Recognit ; 34(11): e2924, 2021 11.
Article in English | MEDLINE | ID: mdl-34164859

ABSTRACT

Dihydrolipoamide dehydrogenase (DLDH) is a homodimeric flavin-dependent enzyme that catalyzes the NAD+ -dependent oxidation of dihydrolipoamide. The enzyme is part of several multi-enzyme complexes such as the Pyruvate Dehydrogenase system that transforms pyruvate into acetyl-co-A. Concomitantly with its redox activity, DLDH produces Reactive Oxygen Species (ROS), which are involved in cellular apoptotic processes. DLDH possesses several moonlighting functions. One of these is the capacity to adhere to metal-oxides surfaces. This was first exemplified by the presence of an exocellular form of the enzyme on the cell-wall surface of Rhodococcus ruber. This capability was evolutionarily conserved and identified in the human, mitochondrial, DLDH. The enzyme was modified with Arg-Gly-Asp (RGD) groups, which enabled its interaction with integrin-rich cancer cells followed by "integrin-assisted-endocytosis." This allowed harnessing the enzyme for cancer therapy. Combining the TiO2 -binding property with DLDH's ROS-production, enabled us to develop several medical applications including improving oesseointegration of TiO2 -based implants and photodynamic treatment for melanoma. The TiO2 -binding sites of both the bacterial and human DLDH's were identified on the proteins' molecules at regions that overlap with the binding site of E3-binding protein (E3BP). This protein is essential in forming the multiunit structure of PDC. Another moonlighting activity of DLDH, which is described in this Review, is its DNA-binding capacity that may affect DNA chelation and shredding leading to apoptotic processes in living cells. The typical ROS-generation by DLDH, which occurs in association with its enzymatic activity and its implications in cancer and apoptotic cell death are also discussed.


Subject(s)
Dihydrolipoamide Dehydrogenase/metabolism , Mitochondria/metabolism , Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Thioctic Acid/analogs & derivatives , Animals , Dihydrolipoamide Dehydrogenase/chemistry , Humans , Neoplasms/enzymology , Oxidation-Reduction , Photochemotherapy , Prostheses and Implants , Thioctic Acid/metabolism
4.
J Clin Med ; 9(10)2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33036331

ABSTRACT

Activating alterations in PIK3CA, the gene coding for the catalytic subunit of phosphoinositide-3-kinase (PI3K), are prevalent in head and neck squamous cell carcinoma (HNSCC) and thought to be one of the main drivers of these tumors. However, early clinical trials on PI3K inhibitors (PI3Ki) have been disappointing due to the limited durability of the activity of these drugs. To investigate the resistance mechanisms to PI3Ki and attempt to overcome them, we conducted a molecular-based study using both HNSCC cell lines and patient-derived xenografts (PDXs). We sought to simulate and dissect the molecular pathways that come into play in PIK3CA-altered HNSCC treated with isoform-specific PI3Ki (BYL719, GDC0032). In vitro assays of cell viability and protein expression indicate that activation of the mTOR and cyclin D1 pathways is associated with resistance to PI3Ki. Specifically, in BYL719-resistant cells, BYL719 treatment did not induce pS6 and pRB inhibition as detected in BYL719-sensitive cells. By combining PI3Ki with either mammalian target of rapamycin complex 1 (mTORC1) or cyclin D1 kinase (CDK) 4/6 specific inhibitors (RAD001 and abemaciclib, respectively), we were able to overcome the acquired resistance. Furthermore, we found that PI3Ki and CDK 4/6 inhibitors have a synergistic anti-tumor effect when combined in human papillomavirus (HPV)-negative/PIK3CA-WT tumors. These findings provide a rationale for combining PI3Ki and CDK 4/6 inhibitors to enhance anti-tumor efficacy in HNSCC patients.

5.
Proteins ; 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32761961

ABSTRACT

Dihydrolipoamide dehydrogenase (DLDH) is a mitochondrial enzyme that comprises an essential component of the pyruvate dehydrogenase complex. Lines of evidence have shown that many dehydrogenases possess unrelated actions known as moonlightings in addition to their oxidoreductase activity. As part of these activities, we have demonstrated that DLDH binds TiO2 as well as produces reactive oxygen species (ROS). This ROS production capability was harnessed for cancer therapy via integrin-mediated drug-delivery of RGD-modified DLDH (DLDHRGD ), leading to apoptotic cell death. In these experiments, DLDHRGD not only accumulated in the cytosol but also migrated to the cell nuclei, suggesting a potential DNA-binding capability of this enzyme. To explore this interaction under cell-free conditions, we have analyzed DLDH binding to phage lambda (λ) DNA by gel-shift assays and analytic ultracentrifugation, showing complex formation between the two, which led to full coverage of the DNA molecule with DLDH molecules. DNA binding did not affect DLDH enzymatic activity, indicating that there are neither conformational changes nor active site hindering in DLDH upon DNA-binding. A Docking algorithm for prediction of protein-DNA complexes, Paradoc, identified a putative DNA binding site at the C-terminus of DLDH. Our finding that TiO2 -bound DLDH failed to form a complex with DNA suggests partial overlapping between the two sites. To conclude, DLDH binding to DNA presents a novel moonlight activity which may be used for DNA alkylating in cancer treatment.

6.
J Phys Chem A ; 123(44): 9456-9461, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31619040

ABSTRACT

The photocatalytic activity of titanium dioxide (TiO2) due to the generation of reactive oxygen species (ROS) under UV excitation is often used for the decontamination of toxic hazardous materials and self-cleaning processes. However, the large band gap of TiO2 limits the activity to the UV region. This limitation can be overcome by metal doping, which results in extending TiO2 activity into the visible range (vis). This paper describes the preparation and characterization of several TiO2 forms and their modifications for enhanced photocatalytic activity in the UV/vis range. In order to advance this concept for environmental decontamination, the degradation of the organophosphorus pesticide and chemical warfare agent, profenofos (PF), was tested. Fast and full degradation of PF was achieved using either TiO2 in the near-UV (365 nm) or Ag-doped TiO2 (TiO2-Ag) in the UV and vis ranges (400-550 nm). The degradation products were identified chromatographically using GC/MS and HPLC, while the detoxification effect was determined electrochemically using an acetylcholinesterase biosensor. In view of our results, we suggest that TiO2-Ag may be implemented as an additive in surface coatings to allow in situ green self-cleaning.

7.
Oncogene ; 38(25): 5050-5061, 2019 06.
Article in English | MEDLINE | ID: mdl-30872792

ABSTRACT

Cancer cells frequently exhibit higher levels of reactive oxygen species (ROS) than normal cells and when ROS levels increase beyond a cellular tolerability threshold, cancer cell death is enhanced. The mitochondrial dihydrolipoamide dehydrogenase (DLDH) is an enzyme which produces ROS in association with its oxidoreductive activity and may be thus utilized as an exogenous anticancer agent. As cancer cells often overexpress integrins that recognize RGD-containing proteins, we have bioengineered the human DLDH with RGD motifs (DLDHRGD) for integrin-mediated drug delivery. The modified protein fully retained its enzyme activity and ROS-production capability. DLDHRGD uptake by cells was shown to depend on the presence of cell-associated integrin αvß3, as comparatively demonstrated with normal kidney cells (HEK293) transfected with either ß1 (αvß1 positive) or ß3 integrins (αvß3 positive). The interaction with ß3 integrins was shown to be competitively inhibited by an RGD peptide. In mice melanoma cells (B16F10), which highly express an endogenous αvß3 integrin, fast cellular uptake of DLDHRGD which resulted in cell number reduction, apoptosis induction, and a parallel intracellular ROS production was shown. Similar results were obtained with additional human melanoma cell models (A375, WM3314, and WM3682). In contrast, HEK293ß3 cells remained intact following DLDHRGD uptake. The high pharmacological safety profile of DLDHRGD has been observed by several modes of administrations in BALB/C or C57Bl/6 mouse strains. Treatments with DLDHRGD in a subcutaneous melanoma mice model resulted in significant tumor inhibition. Our study demonstrated, in vitro and in vivo, the development of a unique platform, which targets cancer cells via integrin-mediated drug delivery of an exogenous ROS-generating drug.


Subject(s)
Dihydrolipoamide Dehydrogenase/administration & dosage , Drug Delivery Systems , Integrin alphaVbeta3/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Reactive Oxygen Species/metabolism , Animals , Cells, Cultured , Dihydrolipoamide Dehydrogenase/chemistry , Dihydrolipoamide Dehydrogenase/metabolism , Female , HEK293 Cells , Humans , Integrin alphaVbeta3/chemistry , Integrin alphaVbeta3/physiology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/metabolism , Oligopeptides/chemistry , Oxidation-Reduction , Xenograft Model Antitumor Assays
8.
J Biomed Mater Res A ; 107(3): 545-551, 2019 03.
Article in English | MEDLINE | ID: mdl-30390369

ABSTRACT

Titanium and its alloys are widely used in dental- and orthopedic implants, the outer surface of which is often oxidized to titanium dioxide (TiO2 ). To achieve efficient osseointegration with bone-forming cells, it is desirable to counter the formation of the soft fibrous tissue around the implant by creating strong and stable interactions between the implant surface and bone-forming osteoblasts. To address this challenge, a bioactive coating had to be designed. Protein adsorption to TiO2 is well known in the literature, but it is mostly characterized by weak associations, rendering less efficient implant osseointegration. We have previously demonstrated the unique conjugation between the dihydrolipoamide dehydrogenase (DLDH) protein and TiO2 surfaces, based on specific coordinative bonding via Cys-His-Glu-Asp motif residues. To enhance cell binding to DLDH and facilitate osseointegration, DLDH was bioengineered to include Arg-Gly-Asp (RGD) moieties (DLDHRGD ). Coating TiO2 disks with DLDHRGD led to improved adherence of integrin-expressing osteogenic MBA-15 to the surface of the disks. Following the enhanced adsorption, higher proliferation rates of the adherent cells, as well as faster mineralization were observed, compared to controls. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 545-551, 2019.


Subject(s)
Bone and Bones/metabolism , Dihydrolipoamide Dehydrogenase/chemistry , Implants, Experimental , Oligopeptides/chemistry , Osseointegration , Titanium/chemistry , Animals , Bone and Bones/cytology , Cell Adhesion , Cell Line , Mice
9.
RSC Adv ; 8(17): 9112-9119, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-35541888

ABSTRACT

The photocytotoxic effect of UVA-excited titanium dioxide (TiO2), which is caused by the generation of reactive oxygen species (ROS), is often used in medical applications, such as cancer treatment. Photodynamic-therapy (PDT) is applied in several cancer models including cutaneous melanoma (CM), however the lack of selectivity causing damage to surrounding healthy tissues limits its applicability and novel targeted-delivery approaches are required. As cancer cells often overexpress integrin receptors (e.g. αvß3) on their cell surface, targeted delivery of TiO2 nanoparticles (NPs) via an Arg-Gly-Asp (RGD) motif would make PDT more selective. We have recently reported that the mitochondrial enzyme dihydrolipoamide dehydrogenase (DLDH) strongly and specifically conjugates TiO2 via coordinative bonds. In this work we have modified DLDH with RGD moieties (DLDHRGD), creating a molecular bridge between the integrin-expressing cancer cells and the photo-excitable TiO2 nanoparticles. Physicochemical assays have indicated that the hybrid-conjugated nanobiocomplex, TiO2-DLDHRGD, is producing controlled-release ROS under UVA illumination, with anatase NPs being the most photoreactive TiO2 form. This drug delivery system exhibited a cytotoxic effect in αvß3 integrin-expressing mice melanoma cells (B16F10), but not in normal cells lacking this integrin (HEK293). No cytotoxic effect was observed in the absence of UV illumination. Our results demonstrate the feasibility of combining the high efficiency of TiO2-based PDT, with an integrin-mediated tumor-targeted drug delivery for nanomedicine.

10.
J Mol Recognit ; 30(8)2017 08.
Article in English | MEDLINE | ID: mdl-28247484

ABSTRACT

Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO2 -binding capabilities with TiBP. Intrigued by the unique TiO2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO2 through similar regions located far from the active site and the dimerization sites. The putative TiO2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins.


Subject(s)
Dihydrolipoamide Dehydrogenase/chemistry , Prostheses and Implants , Thioctic Acid/analogs & derivatives , Titanium/chemistry , Amino Acid Motifs , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhodococcus/chemistry , Rhodococcus/enzymology , Structural Homology, Protein , Thermodynamics , Thioctic Acid/chemistry , Thioctic Acid/metabolism , Titanium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL