Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 273(Pt 2): 132951, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848851

ABSTRACT

The current work focuses on developing nanocomposite films using taro starch and cellulose nanofibers extracted from the root's peel. Films were prepared using mixtures of starch, cellulose nanofibers (0 %, 5 %, 10 %, and 15 % w/w), glycerol, and water. Results showed that the addition of cellulose nanofibers increased film thickness, opacity, UV-light barrier capacity, and water swelling percentage. All films showed a typical B-type X-ray diffraction pattern characteristic of semicrystalline materials. FTIR analysis confirmed chemical interactions between the starch chains and the nanofibers, which probably interact through hydrogen bonds. Nanocomposite films exhibited increased tensile strength and reduced strain at break compared to control materials. Films with cellulose nanofibers showed an increase in Young's modulus compared to control ones, with no differences observed between films with cellulose nanofibers at 10 % and 15 %. Furthermore, films with cellulose nanofibers at 5 % and 10 % exhibited lower water vapor permeability than control samples, while those with cellulose nanofibers at 15 % showed an increase in this parameter compared to other materials. These results suggest that incorporating taro cellulose nanofibers is a promising alternative for obtaining taro starch nanocomposites films with improved properties.


Subject(s)
Cellulose , Nanocomposites , Nanofibers , Permeability , Starch , Nanofibers/chemistry , Nanocomposites/chemistry , Cellulose/chemistry , Starch/chemistry , Tensile Strength , Steam , Water/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL