Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36829965

ABSTRACT

Shrimp side streams represent an important natural source of astaxanthin. Optimization of the astaxanthin extraction process from shrimp side streams is of great importance for the valorization of crustacean side streams and the development of astaxanthin-related products. The combined and independent effects of two innovative extraction technologies (pulsed electric fields (PEFs) and accelerated solvent extraction (ASE)) alone and/or combined in a sequential step, using two different solvents on astaxanthin extraction from two shrimp species, were evaluated. Astaxanthin content in the extracts of shrimp side streams was determined by both spectrophotometric and HPLC assays, being the determination of the carotenoid profiles performed by HPLC analysis. Compared to a solvent extraction control procedure, the astaxanthin content was increased after ASE and PEF treatments, for both shrimp species, independently of the solvent used. The highest recovery (585.90 µg/g) was obtained for the species A. antennatus, with the solvent DMSO when PEF and ASE were combined, while the increase in antioxidant capacity varied depending on the solvent used. HPLC analysis of the samples revealed the presence of unesterified (all-E) astaxanthin, four unesterified Z isomers of astaxanthin and many unresolved astaxanthin esters. Both technologies are useful tools to recover antioxidant valuable carotenoids such as astaxanthin from shrimp side streams.

2.
Foods ; 11(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36076877

ABSTRACT

Chitosan (Ch) is a partially crystalline biopolymer, insoluble in pure water but soluble in acid solutions. It has attracted interest from researchers to prepare solutions using different acid types and concentrations. This research aims to study both the effect of chitosan (Ch) or acetic acid (Ac) concentrations, at different temperatures, on rheological and viscoelastic properties of Ch solutions. To study the effect of Ch, solutions were prepared with 0.5−2.5 g Ch/100 g of solution and Ac = 1%, whereas to study the effect of Ac, the solutions were prepared with 2.0 g of Ch/100 g of solution and Ac = 0.2−1.0%. Overall, all analyzed solutions behaved as pseudoplastic fluid. The Ch strongly affected rheological properties, the consistency index (K) increased and the index flow behavior (n) decreased as a function of Ch. The activation energy, defined as the energy required for the molecule of a fluid to move freely, was low for Ch = 0.5%. The effect of Ac was less evident. Both K and n varied according to a positive and negative, respectively, parabolic model as a function of Ac. Moreover, all solutions, irrespective of Ch and Ac, behaved as diluted solutions, with G" > G'. The relaxation exponent (n") was always higher than 0.5, confirming that these systems behaved as a viscoelastic liquid. This n" increased with Ch, but it was insensitive to Ac, being slightly higher at 45 °C.

3.
Foods ; 10(9)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34574140

ABSTRACT

The crustacean processing industry has experienced significant growth over recent decades resulting in the production of a great number of by-products. Crustacean by-products contain several valuable components such as proteins, lipids, and carotenoids, especially astaxanthin and chitin. When isolated, these valuable compounds are characterized by bioactivities such as anti-microbial, antioxidant, and anti-cancer ones, and that could be used as nutraceutical ingredients or additives in the food, pharmaceutical, and cosmetic industries. Different innovative non-thermal technologies have appeared as promising, safe, and efficient tools to recover these valuable compounds. This review aims at providing a summary of the main compounds that can be extracted from crustacean by-products, and of the results obtained by applying the main innovative non-thermal processes for recovering such high-value products. Moreover, from the perspective of the circular economy approach, specific case studies on some current applications of the recovered compounds in the seafood industry are presented. The extraction of valuable components from crustacean by-products, combined with the development of novel technological strategies aimed at their recovery and purification, will allow for important results related to the long-term sustainability of the seafood industry to be obtained. Furthermore, the reuse of extracted components in seafood products is an interesting strategy to increase the value of the seafood sector overall. However, to date, there are limited industrial applications for this promising approach.

4.
Foods ; 9(10)2020 Oct 17.
Article in English | MEDLINE | ID: mdl-33080879

ABSTRACT

Despite their high nutritional value, high quantities of fish caught in the Adriatic Sea are underused or discarded for their insignificant economic value. Mechanical separation of flesh represents an opportunity for developing innovative semi-finished products, even if it can promote an increased quality degradation rate. The aim of this study was to evaluate physico-chemical modifications of mechanically separated mantis shrimp flesh during deep-freezing storage. Flesh samples obtained using a belt-drum separator, frozen and vacuum-packed, were stored at 3 temperatures (industrial: -26 °C; domestic: -18 °C and abuse: -10 °C) for 12 months. During storage, qualitative (color, water content, pH, fatty acids (FA) and lipid oxidation) were evaluated. Fish freshness parameters (e.g., trimethylamine (TMA), dimethylamine (DMA) and amino acids) were assessed using nuclear magnetic resonance (1H-NMR). The mechanical separation process accelerated the initial oxidation phenomena, promoting color alterations, compared to manual separation. The main degradation phenomena during storage were significantly affected by temperature and were related to changes in luminosity, oxidation of n-3 polyunsaturated fatty acids (PUFA), increased lipolysis with release of free FA, production of TMA and DMA by residual enzymatic activity, and changes in amino acids due to proteolysis. The inter-disciplinary approach permitted important findings to be made, in terms of the extent of different degradative phenomena, bound to processing and storage conditions of mechanically separated mantis flesh.

5.
Food Res Int ; 115: 268-275, 2019 01.
Article in English | MEDLINE | ID: mdl-30599941

ABSTRACT

The effect of modified atmosphere packaging (MAP) with unconventional gas mixtures on the main qualitative parameters of sardine fillets during refrigerated storage was investigated. Four different atmospheres conditions were tested: air; 30% CO2 + 70% N2; 30% CO2 + 70% N2O and 30% CO2 + 70% Ar. All samples were packaged in polypropylene trays sealed with a high barrier film and stored at 2-4 °C for 12 days. The quality and the freshness of sardine fillets packed in MAP were evaluated by microbiological, physical and chemical analyses after 0, 1, 2, 5, 6, 8 and 12 days of the storage period. The 2-thiobarbituric acid-reactive substances (TBARS) values for MAP samples were lower compared to air samples, reaching a final value of 1.09 mg malonaldehyde (MA)/kg and 3.39 mg MA/kg, respectively. The samples packed in Ar reached the fixed threshold for total mesophilic and psychrotrophic bacteria after 12 days of storage, resulting the best MAP condition adopted, able to increase the sardine shelf-life of 3 days with respect to the other tested conditions. Air packed samples showed significantly higher (p < 0.05) Hx content (50 mg/kg) compared to the rest of the MAP samples (20 mg/kg). At the end of the storage period, the sample packed in Ar showed a significantly lower value (p < 0.05) (around 40 mg/kg), than the other MAP conditions.


Subject(s)
Argon/analysis , Food Packaging/methods , Food Quality , Food Storage , Nitrous Oxide/analysis , Refrigeration , Seafood/analysis , Animals , Atmosphere/analysis , Bacteria/growth & development , Carbon Dioxide/analysis , Cold Temperature , Fishes , Food Contamination/analysis , Food Microbiology , Hypoxanthine/analysis , Magnetic Resonance Spectroscopy , Nitrogen/analysis , Oxygen/analysis , Seafood/microbiology , Thiobarbituric Acid Reactive Substances/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...