Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 10(1): 120, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986378

ABSTRACT

A major obstacle to identifying improved treatments for pediatric low-grade brain tumors (gliomas) is the inability to reproducibly generate human xenografts. To surmount this barrier, we leveraged human induced pluripotent stem cell (hiPSC) engineering to generate low-grade gliomas (LGGs) harboring the two most common pediatric pilocytic astrocytoma-associated molecular alterations, NF1 loss and KIAA1549:BRAF fusion. Herein, we identified that hiPSC-derived neuroglial progenitor populations (neural progenitors, glial restricted progenitors and oligodendrocyte progenitors), but not terminally differentiated astrocytes, give rise to tumors retaining LGG histologic features for at least 6 months in vivo. Additionally, we demonstrated that hiPSC-LGG xenograft formation requires the absence of CD4 T cell-mediated induction of astrocytic Cxcl10 expression. Genetic Cxcl10 ablation is both necessary and sufficient for human LGG xenograft development, which additionally enables the successful long-term growth of patient-derived pediatric LGGs in vivo. Lastly, MEK inhibitor (PD0325901) treatment increased hiPSC-LGG cell apoptosis and reduced proliferation both in vitro and in vivo. Collectively, this study establishes a tractable experimental humanized platform to elucidate the pathogenesis of and potential therapeutic opportunities for childhood brain tumors.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Induced Pluripotent Stem Cells , Animals , Astrocytoma/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Child , Glioma/genetics , Glioma/metabolism , Glioma/therapy , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Neuroglia/pathology
2.
Neurooncol Adv ; 4(1): vdab194, 2022.
Article in English | MEDLINE | ID: mdl-35187488

ABSTRACT

BACKGROUND: Brain tumor formation and progression are dictated by cooperative interactions between neoplastic and non-neoplastic cells. This stromal dependence is nicely illustrated by tumors arising in the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome, where children develop low-grade optic pathway gliomas (OPGs). Using several authenticated Nf1-OPG murine models, we previously demonstrated that murine Nf1-OPG growth is regulated by T cell function and microglia Ccl5 production, such that their inhibition reduces tumor proliferation in vivo. While these interactions are critical for established Nf1-OPG tumor growth, their importance in tumor formation has not been explored. METHODS: A combination of bulk and single-cell RNA mouse optic nerve sequencing, immunohistochemistry, T cell assays, and pharmacologic and antibody-mediated inhibition methods were used in these experiments. RESULTS: We show that T cells and microglia are the main non-neoplastic immune cell populations in both murine and human LGGs. Moreover, we demonstrate that CD8+ T cells, the predominant LGG-infiltrating lymphocyte population, are selectively recruited through increased Ccl2 receptor (Ccr4) expression in CD8+, but not CD4+, T cells, in a NF1/RAS-dependent manner. Finally, we identify the times during gliomagenesis when microglia Ccl5 production (3-6 weeks of age) and Ccl2-mediated T cell infiltration (7-10 weeks of age) occur, such that temporally-restricted Ccl2 or Ccl5 inhibition abrogates tumor formation >3.5 months following the cessation of treatment. CONCLUSIONS: Collectively, these findings provide proof-of-concept demonstrations that targeting stromal support during early gliomagenesis durably blocks murine LGG formation.

3.
Neuro Oncol ; 24(1): 14-26, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34043012

ABSTRACT

BACKGROUND: Emerging insights from numerous laboratories have revealed important roles for nonneoplastic cells in the development and progression of brain tumors. One of these nonneoplastic cellular constituents, glioma-associated microglia (GAM), represents a unique population of brain monocytes within the tumor microenvironment that have been reported to both promote and inhibit glioma proliferation. To elucidate the role of GAM in the setting of low-grade glioma (LGG), we leveraged RNA sequencing meta-analysis, genetically engineered mouse strains, and human biospecimens. METHODS: Publicly available disease-associated microglia (DAM) RNA-seq datasets were used, followed by immunohistochemistry and RNAScope validation. CD11a-deficient mouse microglia were used for in vitro functional studies, while LGG growth in mice was assessed using anti-CD11a neutralizing antibody treatment of Neurofibromatosis type 1 (Nf1) optic glioma mice in vivo. RESULTS: We identified Itgal/CD11a enrichment in GAM relative to other DAM populations, which was confirmed in several independently generated murine models of Nf1 optic glioma. Moreover, ITGAL/CD11A expression was similarly increased in human LGG (pilocytic astrocytoma) specimens from several different datasets, specifically in microglia from these tumors. Using CD11a-knockout mice, CD11a expression was shown to be critical for murine microglia CX3CL1 receptor (Cx3cr1) expression and CX3CL1-directed motility, as well as glioma mitogen (Ccl5) production. Consistent with an instructive role for CD11a+ microglia in stromal control of LGG growth, antibody-mediated CD11a inhibition reduced mouse Nf1 LGG growth in vivo. CONCLUSIONS: Collectively, these findings establish ITGAL/CD11A as a critical microglia regulator of LGG biology relevant to future stroma-targeted brain tumor treatment strategies.


Subject(s)
Brain Neoplasms , Neurofibromatosis 1 , Optic Nerve Glioma , Animals , Brain Neoplasms/genetics , Mice , Mice, Inbred C57BL , Microglia , Sequence Analysis, RNA , Tumor Microenvironment
4.
Cell Calcium ; 60(6): 396-406, 2016 12.
Article in English | MEDLINE | ID: mdl-27697289

ABSTRACT

Microglia are the resident immune cells in the central nervous system and many of their physiological functions are known to be linked to intracellular calcium (Ca2+) signaling. Here we show that isolated and purified mouse microglia-either freshly or cultured-display spontaneous and transient Ca2+ elevations lasting for around ten to twenty seconds and occurring at frequencies of around five to ten events per hour and cell. The events were absent after depletion of internal Ca2+ stores, by phospholipase C (PLC) inhibition or blockade of inositol-1,4,5-trisphosphate receptors (IP3Rs), but not by removal of extracellular Ca2+, indicating that Ca2+ is released from endoplasmic reticulum intracellular stores. We furthermore provide evidence that autocrine ATP release and subsequent activation of purinergic P2Y receptors is not the trigger for these events. Spontaneous Ca2+ transients did also occur after stimulation with Lipopolysaccharide (LPS) and in glioma-associated microglia, but their kinetics differed from control conditions. We hypothesize that spontaneous Ca2+ transients reflect aspects of cellular homeostasis that are linked to regular and patho-physiological functions of microglia.


Subject(s)
Calcium/metabolism , Microglia/metabolism , Animals , Cells, Cultured , Kinetics , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Microglia/cytology , Microglia/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...