Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(23): 6865-6871, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809171

ABSTRACT

All-optical switching (AOS) results in ultrafast and deterministic magnetization reversal upon single laser pulse excitation, potentially supporting faster and more energy-efficient data storage. To explore the fundamental limits of achievable bit densities in AOS, we have used soft X-ray transient grating spectroscopy to study the ultrafast magnetic response of a GdFe alloy after a spatially structured excitation with a periodicity of 17 nm. The ultrafast spatial evolution of the magnetization in combination with atomistic spin dynamics and microscopic temperature model calculations allows us to derive a detailed phase diagram of AOS as a function of both the absorbed energy density and the nanoscale excitation period. Our results suggest that the minimum size for AOS in GdFe alloys, induced by a nanoscale periodic excitation, is around 25 nm and that this limit is governed by ultrafast lateral electron diffusion and by the threshold for optical damage.

2.
J Synchrotron Radiat ; 31(Pt 3): 605-612, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38592969

ABSTRACT

Experimental characterization of the structural, electronic and dynamic properties of dilute systems in aqueous solvents, such as nanoparticles, molecules and proteins, are nowadays an open challenge. X-ray absorption spectroscopy (XAS) is probably one of the most established approaches to this aim as it is element-specific. However, typical dilute systems of interest are often composed of light elements that require extreme-ultraviolet to soft X-ray photons. In this spectral regime, water and other solvents are rather opaque, thus demanding radical reduction of the solvent volume and removal of the liquid to minimize background absorption. Here, we present an experimental endstation designed to operate a liquid flat jet of sub-micrometre thickness in a vacuum environment compatible with extreme ultraviolet/soft XAS measurements in transmission geometry. The apparatus developed can be easily connected to synchrotron and free-electron-laser user-facility beamlines dedicated to XAS experiments. The conditions for stable generation and control of the liquid flat jet are analyzed and discussed. Preliminary soft XAS measurements on some test solutions are shown.

3.
Nat Commun ; 15(1): 1317, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351136

ABSTRACT

Nanophononic materials are characterized by a periodic nanostructuration, which may lead to coherent scattering of phonons, enabling interference and resulting in modified phonon dispersions. We have used the extreme ultraviolet transient grating technique to measure phonon frequencies and lifetimes in a low-roughness nanoporous phononic membrane of SiN at wavelengths between 50 and 100 nm, comparable to the nanostructure lengthscale. Surprisingly, phonon frequencies are only slightly modified upon nanostructuration, while phonon lifetime is strongly reduced. Finite element calculations indicate that this is due to coherent phonon interference, which becomes dominant for wavelengths between ~ half and twice the inter-pores distance. Despite this, vibrational energy transport is ensured through an energy flow among the coherent modes created by reflections. This interference of phonon echos from periodic interfaces is likely another aspect of the mutual coherence effects recently highlighted in amorphous and complex crystalline materials and, in this context, could be used to tailor transport properties of nanostructured materials.

4.
Phys Rev Lett ; 131(25): 256702, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38181360

ABSTRACT

Time-resolved ultrafast EUV magnetic scattering was used to test a recent prediction of >10 km/s domain wall speeds by optically exciting a magnetic sample with a nanoscale labyrinthine domain pattern. Ultrafast distortion of the diffraction pattern was observed at markedly different timescales compared to the magnetization quenching. The diffraction pattern distortion shows a threshold dependence with laser fluence, not seen for magnetization quenching, consistent with a picture of domain wall motion with pinning sites. Supported by simulations, we show that a speed of ≈66 km/s for highly curved domain walls can explain the experimental data. While our data agree with the prediction of extreme, nonequilibrium wall speeds locally, it differs from the details of the theory, suggesting that additional mechanisms are required to fully understand these effects.

5.
J Synchrotron Radiat ; 29(Pt 4): 969-977, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35787562

ABSTRACT

We report on the characterization of a novel extreme-ultraviolet polarimeter based on conical mirrors to simultaneously detect all the components of the electric field vector for extreme-ultraviolet radiation in the 45-90 eV energy range. The device has been characterized using a variable polarization source at the Elettra synchrotron, showing good performance in the ability to determine the radiation polarization. Furthermore, as a possible application of the device, Faraday spectroscopy and time-resolved experiments have been performed at the Fe M2,3-edge on an FeGd ferrimagnetic thin film using the FERMI free-electron laser source. The instrument is shown to be able to detect the small angular variation induced by an optical external stimulus on the polarization state of the light after interaction with magnetic thin film, making the device an appealing tool for magnetization dynamics research.

6.
Sensors (Basel) ; 22(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35746377

ABSTRACT

In hard X-ray applications that require high detection efficiency and short response times, such as synchrotron radiation-based Mössbauer absorption spectroscopy and time-resolved fluorescence or photon beam position monitoring, III-V-compound semiconductors, and dedicated alloys offer some advantages over the Si-based technologies traditionally used in solid-state photodetectors. Amongst them, gallium arsenide (GaAs) is one of the most valuable materials thanks to its unique characteristics. At the same time, implementing charge-multiplication mechanisms within the sensor may become of critical importance in cases where the photogenerated signal needs an intrinsic amplification before being acquired by the front-end electronics, such as in the case of a very weak photon flux or when single-photon detection is required. Some GaAs-based avalanche photodiodes (APDs) were grown by a molecular beam epitaxy to fulfill these needs; by means of band gap engineering, we realised devices with separate absorption and multiplication region(s) (SAM), the latter featuring a so-called staircase structure to reduce the multiplication noise. This work reports on the experimental characterisations of gain, noise, and charge collection efficiencies of three series of GaAs APDs featuring different thicknesses of the absorption regions. These devices have been developed to investigate the role of such thicknesses and the presence of traps or defects at the metal-semiconductor interfaces responsible for charge loss, in order to lay the groundwork for the future development of very thick GaAs devices (thicker than 100 µm) for hard X-rays. Several measurements were carried out on such devices with both lasers and synchrotron light sources, inducing photon absorption with X-ray microbeams at variable and controlled depths. In this way, we verified both the role of the thickness of the absorption region in the collection efficiency and the possibility of using the APDs without reaching the punch-through voltage, thus preventing the noise induced by charge multiplication in the absorption region. These devices, with thicknesses suitable for soft X-ray detection, have also shown good characteristics in terms of internal amplification and reduction of multiplication noise, in line with numerical simulations.

7.
Faraday Discuss ; 237(0): 40-57, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35698996

ABSTRACT

Dimensionality plays a key role in the emergence of ordered phases, such as charge density-waves (CDW), which can couple to, and modulate, the topological properties of matter. In this work, we study the out-of-equilibrium dynamics of the paradigmatic quasi-one-dimensional material (TaSe4)2I, which exhibits a transition into an incommensurate CDW phase when cooled to just below room temperature, namely at TCDW = 263 K. We make use of both optical laser and free-electron laser (FEL) based time-resolved spectroscopies in order to study the effect of a selective excitation on the normal-state and on the CDW phases by probing the near-infrared/visible optical properties both along and perpendicularly to the direction of the CDW, where the system is metallic and insulating, respectively. Excitation of the core-levels by ultrashort X-ray FEL pulses at 47 eV and 119 eV induces reflectivity transients resembling those recorded when only exciting the valence band of the compound - by near-infrared pulses at 1.55 eV - in the case of the insulating sub-system. Conversely, the metallic sub-system displays relaxation dynamics which depend on the energy of photo-excitation. Moreover, excitation of the CDW amplitude mode is recorded only for excitation at a low-photon-energy. This fact suggests that the coupling of light to ordered states of matter can predominantly be achieved when directly injecting delocalized carriers in the valence band, rather than localized excitations in the core levels. Complementing this, table-top experiments allow us to prove the quasi-unidirectional nature of the CDW phase in (TaSe4)2I, whose fingerprints are detected along its c-axis only. Our results provide new insights into the symmetry of the ordered phase of (TaSe4)2I perturbed by a selective excitation, and suggest a novel approach based on complementary table-top and FEL spectroscopies for the study of complex materials.

8.
Nano Lett ; 22(11): 4452-4458, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35605204

ABSTRACT

Ultrafast control of magnetization on the nanometer length scale, in particular all-optical switching, is key to putting ultrafast magnetism on the path toward future technological application in data storage technology. However, magnetization manipulation with light on this length scale is challenging due to the wavelength limitations of optical radiation. Here, we excite transient magnetic gratings in a GdFe alloy with a periodicity of 87 nm by the interference of two coherent femtosecond light pulses in the extreme ultraviolet spectral range. The subsequent ultrafast evolution of the magnetization pattern is probed by diffraction of a third, time-delayed pulse tuned to the Gd N-edge at a wavelength of 8.3 nm. By examining the simultaneously recorded first and second order diffractions and by performing reference real-space measurements with a wide-field magneto-optical microscope with femtosecond time resolution, we can conclusively demonstrate the ultrafast emergence of all-optical switching on the nanometer length scale.

9.
J Synchrotron Radiat ; 29(Pt 2): 594, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35254326

ABSTRACT

The name of one of the authors in the article by Léveillé et al. [(2022), J. Synchrotron Rad. 29, 103-110] is corrected.

10.
Phys Rev Lett ; 128(7): 077401, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35244431

ABSTRACT

We report on the experimental evidence of magnetic helicoidal dichroism, observed in the interaction of an extreme ultraviolet vortex beam carrying orbital angular momentum with a magnetic vortex. Numerical simulations based on classical electromagnetic theory show that this dichroism is based on the interference of light modes with different orbital angular momenta, which are populated after the interaction between light and the magnetic topology. This observation gives insight into the interplay between orbital angular momentum and magnetism and sets the framework for the development of new analytical tools to investigate ultrafast magnetization dynamics.

11.
J Synchrotron Radiat ; 29(Pt 1): 103-110, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34985427

ABSTRACT

The latest Complementary Metal Oxide Semiconductor (CMOS) 2D sensors now rival the performance of state-of-the-art photon detectors for optical application, combining a high-frame-rate speed with a wide dynamic range. While the advent of high-repetition-rate hard X-ray free-electron lasers (FELs) has boosted the development of complex large-area fast CCD detectors in the extreme ultraviolet (EUV) and soft X-ray domains, scientists lacked such high-performance 2D detectors, principally due to the very poor efficiency limited by the sensor processing. Recently, a new generation of large back-side-illuminated scientific CMOS sensors (CMOS-BSI) has been developed and commercialized. One of these cost-efficient and competitive sensors, the GSENSE400BSI, has been implemented and characterized, and the proof of concept has been carried out at a synchrotron or laser-based X-ray source. In this article, we explore the feasibility of single-shot ultra-fast experiments at FEL sources operating in the EUV/soft X-ray regime with an AXIS-SXR camera equipped with the GSENSE400BSI-TVISB sensor. We illustrate the detector capabilities by performing a soft X-ray magnetic scattering experiment at the DiProi end-station of the FERMI FEL. These measurements show the possibility of integrating this camera for collecting single-shot images at the 50 Hz operation mode of FERMI with a cropped image size of 700 × 700 pixels. The efficiency of the sensor at a working photon energy of 58 eV and the linearity over the large FEL intensity have been verified. Moreover, on-the-fly time-resolved single-shot X-ray resonant magnetic scattering imaging from prototype Co/Pt multilayer films has been carried out with a time collection gain of 30 compared to the classical start-and-stop acquisition method performed with the conventional CCD-BSI detector available at the end-station.

12.
Rev Sci Instrum ; 91(7): 073106, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32752873

ABSTRACT

We report here an experimental setup to perform three-pulse pump-probe measurements over a wide wavelength and temperature range. By combining two pump pulses in the visible (650 nm-900 nm) and mid-IR (5 µm-20 µm) range, with a broadband supercontinuum white-light probe, our apparatus enables both the combined selective excitation of different material degrees of freedom and a full time-dependent reconstruction of the non-equilibrium dielectric function of the sample. We describe here the optical setup, the cryogenic sample environment, and the custom-made acquisition electronics capable of referenced single-pulse detection of broadband spectra at the maximum repetition rate of 50 kHz, achieving a sensitivity of the order of 10-4 over an integration time of 1 s. We demonstrate the performance of the setup by reporting data on a mid-IR pump, optical push, and broadband probe in a single crystal of Bi2Sr2Y0.08Ca0.92Cu2O8+δ across the superconducting and pseudogap phases.

13.
Ther Innov Regul Sci ; 47(3): 327-335, 2013 May.
Article in English | MEDLINE | ID: mdl-30231430

ABSTRACT

The product pipeline for diseases that disproportionately affect the developing world has considerably expanded over the last decade. Indeed, there are about 134 products for these diseases in the pipeline, including vaccines, drugs, diagnostics, microbicides, and vector control tools, and dozens of these products are currently being evaluated in human trials in developing countries where the disease of interest exists. While these efforts are underway, the need to identify regulatory pathways for licensing these new products is becoming obvious to many manufacturers. In many developing countries, where the need of these products is greatest, the national regulatory authorities often lack the resources and regulatory capacity to review the registration dossiers to approve the use of new products. Given this challenge, new regulatory models are urgently needed to offset product registration. In this paper, we propose how regional regulatory frameworks established by regional harmonization initiatives can be used to set up an integrated regional licensing system, a system that will provide for a single product dossier application and a single review, leading to a single approval that will grant access to all the markets in the region. The proposed model aims at complementing the ongoing regional regulatory harmonization efforts by pooling the activities of different national expertise groups so as to make the best use of the available skills at a reduced cost. By sharing the various regulatory tasks in an integrated manner, the total process will be accelerated and will facilitate product registration in the region.

SELECTION OF CITATIONS
SEARCH DETAIL
...