Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Swiss J Palaeontol ; 143(1): 23, 2024.
Article in English | MEDLINE | ID: mdl-38827169

ABSTRACT

Belemnite rostra are very abundant in Mesozoic marine deposits in many regions. Despite this abundance, soft-tissue specimens of belemnites informing about anatomy and proportions of these coleoid cephalopods are extremely rare and limited to a few moderately large genera like Passaloteuthis and Hibolithes. For all other genera, we can make inferences on their body proportions and body as well as mantle length by extrapolating from complete material. We collected data of the proportions of the hard parts of some Jurassic belemnites in order to learn about shared characteristics in their gross anatomy. This knowledge is then applied to the Bajocian genus Megateuthis, which is the largest known belemnite genus worldwide. Our results provide simple ratios that can be used to estimate belemnite body size, where only the rostrum is known.

3.
Elife ; 122023 Jul 14.
Article in English | MEDLINE | ID: mdl-37449733

ABSTRACT

Analysis of specimens preserved in amber from the Cretaceous period suggests that nematodes changed their host preference towards insects with a complete metamorphosis more recently.


Subject(s)
Fossils , Nematoda , Animals , Insecta , Amber , Metamorphosis, Biological
4.
Proc Biol Sci ; 289(1981): 20220432, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36043279

ABSTRACT

Today parasites comprise a huge proportion of living biodiversity and play a major role in shaping community structure. Given their ecological significance, parasite extinctions could result in massive cascading effects across ecosystems. It is therefore crucial that we have a way of estimating their extinction risk. Attempts to do this have often relied on information about host extinction risk, without explicitly incorporating information about the parasites. However, assuming an identical risk may be misleading. Here, we apply a novel metric to estimate the cophylogenetic extinction rate, Ec, of parasites with their hosts. This metric incorporates information about the evolutionary history of parasites and hosts that can be estimated using event-based cophylogenetic methods. To explore this metric, we investigated the use of different cophylogenetic methods to inform the Ec rate, based on the analysis of polystome parasites and their anuran hosts. We show using both parsimony- and model-based approaches that different methods can have a large effect on extinction risk estimation. Further, we demonstrate that model-based approaches offer greater potential to provide insights into cophylogenetic history and extinction risk.


Subject(s)
Parasites , Platyhelminths , Animals , Ecosystem , Host-Parasite Interactions , Phylogeny , Platyhelminths/genetics
5.
Swiss J Palaeontol ; 141(1): 7, 2022.
Article in English | MEDLINE | ID: mdl-35607365

ABSTRACT

Sigurd von Boletzky was a cephalopod researcher who was world-renowned for his enthusiasm for his field of research, for his friendly and calm personality, and, of course, his publications. He dedicated most of his life as active researcher on the development, biology and evolution of coleoids. Nevertheless, he was always curious to learn about other cephalopods as well. Sigurd passed away in Switzerland on September 28th 2020. We dedicate this text and volume to his memory.

6.
Integr Comp Biol ; 62(2): 345-356, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35604852

ABSTRACT

Evolutionary transitions of organisms between environments have long fascinated biologists, but attention has been focused almost exclusively on free-living organisms and challenges to achieve such transitions. This bias requires addressing because parasites are a major component of biodiversity. We address this imbalance by focusing on transitions of parasitic animals between marine and freshwater environments. We highlight parasite traits and processes that may influence transition likelihood (e.g., transmission mode, life cycle, host use), and consider mechanisms and directions of transitions. Evidence for transitions in deep time and at present are described, and transitions in our changing world are considered. We propose that environmental transitions may be facilitated for endoparasites because hosts reduce exposure to physiologically challenging environments and argue that adoption of an endoparasitic lifestyle entails an equivalent transitioning process as organisms switch from living in one environment (e.g., freshwater, seawater, or air) to living symbiotically within hosts. Environmental transitions of parasites have repeatedly resulted in novel forms and diversification, contributing to the tree of life. Recognizing the potential processes underlying present-day and future environmental transitions is crucial in view of our changing world and the current biodiversity crisis.


Subject(s)
Parasites , Animals , Biodiversity , Biological Evolution , Fresh Water , Host-Parasite Interactions , Parasites/physiology , Seawater
7.
Swiss J Palaeontol ; 140(1): 10, 2021.
Article in English | MEDLINE | ID: mdl-34721282

ABSTRACT

Especially in Lagerstätten with exceptionally preserved fossils, we can sometimes recognize fossilized remains of meals of animals. We suggest the term leftover fall for the event and the term pabulite for the fossilized meal when it never entered the digestive tract (difference to regurgitalites). Usually, pabulites are incomplete organismal remains and show traces of the predation. Pabulites have a great potential to inform about predation as well as anatomical detail, which is invisible otherwise. Here, we document a pabulite comprising the belemnite Passaloteuthis laevigata from the Toarcian of the Holzmaden region. Most of its soft parts are missing while the arm crown is one of the best preserved that is known. Its arms embrace an exuvia of a crustacean. We suggest that the belemnite represents the remnant of the food of a predatory fish such as the shark Hybodus.

8.
Philos Trans R Soc Lond B Biol Sci ; 376(1837): 20200366, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34538136

ABSTRACT

Growing evidence suggests that biodiversity mediates parasite prevalence. We have compiled the first global database on occurrences and prevalence of marine parasitism throughout the Phanerozoic and assess the relationship with biodiversity to test if there is support for amplification or dilution of parasitism at the macroevolutionary scale. Median prevalence values by era are 5% for the Paleozoic, 4% for the Mesozoic, and a significant increase to 10% for the Cenozoic. We calculated period-level shareholder quorum sub-sampled (SQS) estimates of mean sampled diversity, three-timer (3T) origination rates, and 3T extinction rates for the most abundant host clades in the Paleobiology Database to compare to both occurrences of parasitism and the more informative parasite prevalence values. Generalized linear models (GLMs) of parasite occurrences and SQS diversity measures support both the amplification (all taxa pooled, crinoids and blastoids, and molluscs) and dilution hypotheses (arthropods, cnidarians, and bivalves). GLMs of prevalence and SQS diversity measures support the amplification hypothesis (all taxa pooled and molluscs). Though likely scale-dependent, parasitism has increased through the Phanerozoic and clear patterns primarily support the amplification of parasitism with biodiversity in the history of life. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.


Subject(s)
Biodiversity , Biological Evolution , Invertebrates/parasitology , Parasites/physiology , Vertebrates/parasitology , Animals , Databases, Factual , Fossils , Marine Biology , Paleontology
9.
Sci Rep ; 11(1): 14480, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262074

ABSTRACT

One of the most common responses of marine ectotherms to rapid warming is a reduction in body size, but the underlying reasons are unclear. Body size reductions have been documented alongside rapid warming events in the fossil record, such as across the Pliensbachian-Toarcian boundary (PToB) event (~ 183 Mya). As individuals grow, parallel changes in morphology can indicate details of their ecological response to environmental crises, such as changes in resource acquisition, which may anticipate future climate impacts. Here we show that the morphological growth of a marine predator belemnite species (extinct coleoid cephalopods) changed significantly over the PToB warming event. Increasing robustness at different ontogenetic stages likely results from indirect consequences of warming, like resource scarcity or hypercalcification, pointing toward varying ecological tolerances among species. The results of this study stress the importance of taking life history into account as well as phylogeny when studying impacts of environmental stressors on marine organisms.

10.
Swiss J Palaeontol ; 140(1): 7, 2021.
Article in English | MEDLINE | ID: mdl-33815267

ABSTRACT

Exceptional fossil preservation is required to conserve soft-bodied fossils and even more so to conserve their behaviour. Here, we describe a fossil of a co-occurrence of representatives of two different octobrachian coleoid species. The fossils are from the Toarcian Posidonienschiefer of Ohmden near Holzmaden, Germany. The two animals died in the act of predation, i.e. one had caught the other and had begun to nibble on it, when they possibly sank into hypoxic waters and suffocated (distraction sinking). This supports the idea that primitive vampyromorphs pursued diverse feeding strategies and were not yet adapted to being opportunistic feeders in oxygen minimum zones like their modern relative Vampyroteuthis.

11.
Biol Rev Camb Philos Soc ; 96(2): 576-610, 2021 04.
Article in English | MEDLINE | ID: mdl-33438316

ABSTRACT

Heteromorphs are ammonoids forming a conch with detached whorls (open coiling) or non-planispiral coiling. Such aberrant forms appeared convergently four times within this extinct group of cephalopods. Since Wiedmann's seminal paper in this journal, the palaeobiology of heteromorphs has advanced substantially. Combining direct evidence from their fossil record, indirect insights from phylogenetic bracketing, and physical as well as virtual models, we reach an improved understanding of heteromorph ammonoid palaeobiology. Their anatomy, buoyancy, locomotion, predators, diet, palaeoecology, and extinction are discussed. Based on phylogenetic bracketing with nautiloids and coleoids, heteromorphs like other ammonoids had 10 arms, a well-developed brain, lens eyes, a buccal mass with a radula and a smaller upper as well as a larger lower jaw, and ammonia in their soft tissue. Heteromorphs likely lacked arm suckers, hooks, tentacles, a hood, and an ink sac. All Cretaceous heteromorphs share an aptychus-type lower jaw with a lamellar calcitic covering. Differences in radular tooth morphology and size in heteromorphs suggest a microphagous diet. Stomach contents of heteromorphs comprise planktic crustaceans, gastropods, and crinoids, suggesting a zooplanktic diet. Forms with a U-shaped body chamber (ancylocone) are regarded as suspension feeders, whereas orthoconic forms additionally might have consumed benthic prey. Heteromorphs could achieve near-neutral buoyancy regardless of conch shape or ontogeny. Orthoconic heteromorphs likely had a vertical orientation, whereas ancylocone heteromorphs had a near-horizontal aperture pointing upwards. Heteromorphs with a U-shaped body chamber are more stable hydrodynamically than modern Nautilus and were unable substantially to modify their orientation by active locomotion, i.e. they had no or limited access to benthic prey at adulthood. Pathologies reported for heteromorphs were likely inflicted by crustaceans, fish, marine reptiles, and other cephalopods. Pathologies on Ptychoceras corroborates an external shell and rejects the endocochleate hypothesis. Devonian, Triassic, and Jurassic heteromorphs had a preference for deep-subtidal to offshore facies but are rare in shallow-subtidal, slope, and bathyal facies. Early Cretaceous heteromorphs preferred deep-subtidal to bathyal facies. Late Cretaceous heteromorphs are common in shallow-subtidal to offshore facies. Oxygen isotope data suggest rapid growth and a demersal habitat for adult Discoscaphites and Baculites. A benthic embryonic stage, planktic hatchlings, and a habitat change after one whorl is proposed for Hoploscaphites. Carbon isotope data indicate that some Baculites lived throughout their lives at cold seeps. Adaptation to a planktic life habit potentially drove selection towards smaller hatchlings, implying high fecundity and an ecological role of the hatchlings as micro- and mesoplankton. The Chicxulub impact at the Cretaceous/Paleogene (K/Pg) boundary 66 million years ago is the likely trigger for the extinction of ammonoids. Ammonoids likely persisted after this event for 40-500 thousand years and are exclusively represented by heteromorphs. The ammonoid extinction is linked to their small hatchling sizes, planktotrophic diets, and higher metabolic rates than in nautilids, which survived the K/Pg mass extinction event.


Subject(s)
Cephalopoda , Animals , Ecosystem , Extinction, Biological , Fossils , Phylogeny
12.
Swiss J Palaeontol ; 139(1): 7, 2020.
Article in English | MEDLINE | ID: mdl-33281741

ABSTRACT

Although belemnite rostra can be quite abundant in Jurassic and Cretaceous strata, the record of belemnite jaws was limited to a few specimens from Germany and Russia. Here, we describe and figure three cephalopod jaws from the Middle Jurassic Opalinus Clay of northern Switzerland. Although flattened, the carbonaceous fossils display enough morphological information to rule out an ammonoid, nautiloid or octobrachian origin of the two larger jaws. Their similarities to belemnite jaws from Germany and Russia conforms with our interpretation of these specimens as belemnite jaws. Based on their rather large size, we tentatively assign these two jaws to the megateuthidid Acrocoelites conoideus. The third jaw is a rather small upper jaw of an ammonoid. Since Leioceras opalinum is by far the most common ammonite in this unit in northern Switzerland, we tentatively suggest that the upper jaw belongs to this species.

13.
R Soc Open Sci ; 6(12): 190494, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31903197

ABSTRACT

Body-size reduction is considered an important response to current climate warming and has been observed during past biotic crises, including the Pliensbachian-Toarcian crisis, a second-order mass extinction. However, in fossil cephalopod studies, the mechanisms and their potential link with climate are rarely investigated and palaeobiological scales of organization are not usually differentiated. Here, we hypothesize that belemnites reduce their adult size across the Pliensbachian-Toarcian boundary warming event. Belemnite body-size dynamics across the Pliensbachian-Toarcian boundary in the Peniche section (Lusitanian Basin, Portugal) were analysed based on the newly collected field data. We disentangle the mechanisms and the environmental drivers of the size fluctuations observed from the individual to the assemblage scale. Despite the lack of a major taxonomic turnover, a 40% decrease in rostrum volume is observed across the Pliensbachian-Toarcian boundary, before the Toarcian Oceanic Anoxic Event where belemnites go locally extinct. The pattern is mainly driven by a reduction in adult size of the two dominant species, Pseudohastites longiformis and Passaloteuthis bisulcata. Belemnite-size distribution is best correlated with fluctuations in a palaeotemperature proxy (stable oxygen isotopes); however, potential indirect effects of volcanism and carbon cycle perturbations may also play a role. This highlights the complex interplay between environmental stressors (warming, deoxygenation, nutrient input) and biotic variables (productivity, competition, migration) associated with these hyperthermal events in driving belemnite body-size.

14.
PeerJ ; 5: e3526, 2017.
Article in English | MEDLINE | ID: mdl-28674668

ABSTRACT

We herein examine the only known non-planispirally coiled early Devonian ammonoid, the holotype specimen of Ivoites opitzi, to investigate if the host was encrusted in vivo and if these sclerobionts were responsible for the trochospiral coiling observed in this unique specimen. To test if the presence of runner-like sclerobionts infested the historically collected specimen of Ivoites opitzi during its life, we used microCT to produce a three-dimensional model of the surface of the specimen. Our results indicate that sclerobionts grew across the outer rim (venter) on both sides of the ammonoid conch at exactly the location where the deviation from the planispiral was recognized, and where subsequent ammonoid growth would likely preclude encrustation. This indicates in vivo encrustation of the I. opitzi specimen, and represents the earliest documentation of the phenomenon. Further, this suggests that non-planispiral coiling in I. opitzi was likely pathologically induced and does not represent natural morphological variation in the species. Despite the observed anomalies in coiling, the specimen reached adulthood and retains important identifying morphological features, suggesting the ammonoid was minimally impacted by encrustation in life. As such, appointing a new type specimen-as suggested by some authors-for the species is not necessary. In addition, we identify the sclerobionts responsible for modifying the coiling of this specimen as hederelloids, a peculiar group of sclerobionts likely related to phoronids. Hederelloids in the Devonian are commonly found encrusting on fossils collected in moderately deep environments within the photic zone and are rarely documented in dysphotic and aphotic samples. This indicates that when the ammonoid was encrusted it lived within the euphotic zone and supports the latest interpretations of the Hunsrück Slate depositional environment in the Bundenbach-Gemünden area.

15.
Article in English | MEDLINE | ID: mdl-27325840

ABSTRACT

Evolutionary timescales have mainly used fossils for calibrating molecular clocks, though fossils only really provide minimum clade age constraints. In their place, phylogenetic trees can be calibrated by precisely dated geological events that have shaped biogeography. However, tectonic episodes are protracted, their role in vicariance is rarely justified, the biogeography of living clades and their antecedents may differ, and the impact of such events is contingent on ecology. Biogeographic calibrations are no panacea for the shortcomings of fossil calibrations, but their associated uncertainties can be accommodated. We provide examples of how biogeographic calibrations based on geological data can be established for the fragmentation of the Pangaean supercontinent: (i) for the uplift of the Isthmus of Panama, (ii) the separation of New Zealand from Gondwana, and (iii) for the opening of the Atlantic Ocean. Biogeographic and fossil calibrations are complementary, not competing, approaches to constraining molecular clock analyses, providing alternative constraints on the age of clades that are vital to avoiding circularity in investigating the role of biogeographic mechanisms in shaping modern biodiversity.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.


Subject(s)
Evolution, Molecular , Fossils , Geology/methods , Paleontology/methods , Biological Evolution , Calibration , Time
16.
Adv Parasitol ; 90: 1-51, 2015.
Article in English | MEDLINE | ID: mdl-26597064

ABSTRACT

Knowledge concerning the diversity of parasitism and its reach across our current understanding of the tree of life has benefitted considerably from novel molecular phylogenetic methods. However, the timing of events and the resolution of the nature of the intimate relationships between parasites and their hosts in deep time remain problematic. Despite its vagaries, the fossil record provides the only direct evidence of parasites and parasitism in the fossil record of extant and extinct lineages. Here, we demonstrate the potential of the fossil record and other lines of geological evidence to calibrate the origin and evolution of parasitism by combining different kinds of dating evidence with novel molecular clock methodologies. Other novel methods promise to provide additional evidence for the presence or the life habit of pathogens and their vectors, including the discovery and analysis of ancient DNA and other biomolecules, as well as computed tomographic methods.


Subject(s)
Biological Evolution , Disease Vectors/classification , Fossils , Parasites/classification , Parasites/physiology , Animals , Phylogeny
17.
Adv Parasitol ; 90: 93-135, 2015.
Article in English | MEDLINE | ID: mdl-26597066

ABSTRACT

Novel fossil discoveries have contributed to our understanding of the evolutionary appearance of parasitism in flatworms. Furthermore, genetic analyses with greater coverage have shifted our views on the coevolution of parasitic flatworms and their hosts. The putative record of parasitic flatworms is consistent with extant host associations and so can be used to put constraints on the evolutionary origin of the parasites themselves. The future lies in new molecular clock analyses combined with additional discoveries of exceptionally preserved flatworms associated with hosts and coprolites. Besides direct evidence, the host fossil record and biogeography have the potential to constrain their evolutionary history, albeit with caution needed to avoid circularity, and a need for calibrations to be implemented in the most conservative way. This might result in imprecise, but accurate divergence estimates for the evolution of parasitic flatworms.


Subject(s)
Biological Evolution , Fossils , Host-Parasite Interactions/physiology , Platyhelminths/physiology , Animals , Humans , Invertebrates/parasitology , Platyhelminths/classification , Platyhelminths/genetics , Time , Vertebrates/parasitology
18.
Adv Parasitol ; 90: 201-31, 2015.
Article in English | MEDLINE | ID: mdl-26597068

ABSTRACT

Parasitism is one of the most pervasive phenomena amongst modern eukaryotic life and yet, relative to other biotic interactions, almost nothing is known about its history in deep time. Digenean trematodes (Platyhelminthes) are complex life cycle parasites, which have practically no body fossil record, but induce the growth of characteristic malformations in the shells of their bivalve hosts. These malformations are readily preserved in the fossil record, but, until recently, have largely been overlooked by students of the fossil record. In this review, we present the various malformations induced by trematodes in bivalves, evaluate their distribution through deep time in the phylogenetic and ecological contexts of their bivalve hosts and explore how various taphonomic processes have likely biased our understanding of trematodes in deep time. Trematodes are known to negatively affect their bivalve hosts in a number of ways including castration, modifying growth rates, causing immobilization and, in some cases, altering host behaviour making the host more susceptible to their own predators. Digeneans are expected to be significant agents of natural selection. To that end, we discuss how bivalves may have adapted to their parasites via heterochrony and suggest a practical methodology for testing such hypotheses in deep time.


Subject(s)
Bivalvia/parasitology , Fossils , Host-Parasite Interactions , Trematoda/physiology , Adaptation, Physiological/physiology , Animals , Behavior, Animal , Selection, Genetic
19.
Evolution ; 66(6): 1788-806, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22671547

ABSTRACT

During the Devonian Nekton Revolution, ammonoids show a progressive coiling of their shell just like many other pelagic mollusk groups. These now extinct, externally shelled cephalopods derived from bactritoid cephalopods with a straight shell in the Early Devonian. During the Devonian, evolutionary trends toward tighter coiling and a size reduction occurred in ammonoid embryonic shells. In at least three lineages, descendants with a closed umbilicus evolved convergently from forms with an opening in the first whorl (umbilical window). Other lineages having representatives with open umbilici became extinct around important Devonian events whereas only those with more tightly coiled embryonic shells survived. This change was accompanied by an evolutionary trend in shape of the initial chamber, but no clear trend in its size. The fact that several ammonoid lineages independently reduced and closed the umbilical window more or less synchronously indicates that common driving factors were involved. A trend in size decrease of the embryos as well as the concurrent increase in adult size in some lineages likely reflects a fundamental change in reproductive strategies toward a higher fecundity early in the evolutionary history of ammonoids. This might have played an important role in their subsequent success as well as in their demise.


Subject(s)
Embryonic Development , Mollusca/embryology , Animal Shells , Animals , Mollusca/classification , Mollusca/physiology , Phylogeny , Reproduction
20.
BMC Evol Biol ; 11: 115, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21529353

ABSTRACT

BACKGROUND: A major goal in evolutionary biology is to understand the processes that shape the evolutionary trajectory of clades. The repeated and similar large-scale morphological evolutionary trends of distinct lineages suggest that adaptation by means of natural selection (functional constraints) is the major cause of parallel evolution, a very common phenomenon in extinct and extant lineages. However, parallel evolution can result from other processes, which are usually ignored or difficult to identify, such as developmental constraints. Hence, understanding the underlying processes of parallel evolution still requires further research. RESULTS: Herein, we present a possible case of parallel evolution between two ammonoid lineages (Auguritidae and Pinacitidae) of Early-Middle Devonian age (405-395 Ma), which are extinct cephalopods with an external, chambered shell. In time and through phylogenetic order of appearance, both lineages display a morphological shift toward more involute coiling (i.e. more tightly coiled whorls), larger adult body size, more complex suture line (the folded walls separating the gas-filled buoyancy-chambers), and the development of an umbilical lid (a very peculiar extension of the lateral shell wall covering the umbilicus) in the most derived taxa. Increased involution toward shells with closed umbilicus has been demonstrated to reflect improved hydrodynamic properties of the shell and thus likely results from similar natural selection pressures. The peculiar umbilical lid might have also added to the improvement of the hydrodynamic properties of the shell. Finally, increasing complexity of suture lines likely results from covariation induced by trends of increasing adult size and whorl overlap given the morphogenetic properties of the suture. CONCLUSIONS: The morphological evolution of these two Devonian ammonoid lineages follows a near parallel evolutionary path for some important shell characters during several million years and through their phylogeny. Evolution of some traits (involution, umbilical lid) appears to be mainly driven by adaptation to improve the hydrodynamic properties of the shell, whereas other characters (sutural complexity) evolved due to covariation with features that play a central role in the morphogenesis of mollusc shells. This example provides evidence that parallel evolution can be driven simultaneously by different factors such as covariation (constructional constraints) and adaptation (natural selection).


Subject(s)
Cephalopoda/anatomy & histology , Cephalopoda/genetics , Adaptation, Physiological , Animals , Biological Evolution , Cephalopoda/classification , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...